1,996 research outputs found

    3D weak lensing with spin wavelets on the ball

    Get PDF
    We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing of cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real or harmonic space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.Comment: 24 pages, 4 figures, version accepted for publication in PR

    A novel sampling theorem on the rotation group

    Get PDF
    We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by connecting the rotation group to the three-torus through a periodic extension. Our sampling theorem requires 4L34L^3 samples to capture all of the information content of a signal band-limited at LL, reducing the number of required samples by a factor of two compared to other equiangular sampling theorems. We present fast algorithms to compute the associated Fourier transform on the rotation group, the so-called Wigner transform, which scale as O(L4)O(L^4), compared to the naive scaling of O(L6)O(L^6). For the common case of a low directional band-limit NN, complexity is reduced to O(NL3)O(N L^3). Our fast algorithms will be of direct use in speeding up the computation of directional wavelet transforms on the sphere. We make our SO3 code implementing these algorithms publicly available.Comment: 5 pages, 2 figures, minor changes to match version accepted for publication. Code available at http://www.sothree.or

    How isotropic is the Universe?

    Get PDF
    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σV/H)0<4.7×1011(\sigma_V/H)_0 < 4.7 \times 10^{-11} (95% CI), which is an order of magnitude tighter than previous Planck results that used CMB temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σT,reg/H)0<1.0×106(\sigma_{T,\rm reg}/H)_0<1.0 \times 10^{-6} (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavoured, with odds of 121,000:1 against.Comment: 6 pages, 1 figure, v2: replaced with version accepted by PR

    Sparse Inpainting and Isotropy

    Full text link
    Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.Comment: 18 pages, 6 figures. v3: matches version published in JCAP; formatting changes and single typo correction only. Code available from http://zuserver2.star.ucl.ac.uk/~smf/code.htm

    SILC: a new Planck Internal Linear Combination CMB temperature map using directional wavelets

    Get PDF
    We present new clean maps of the CMB temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretised wavelets --- Scale-discretised, directional wavelet ILC or SILC. Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localise the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimise the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining the use of directional and axisymmetric wavelets depending on scale could yield higher quality CMB temperature maps. Our results set the stage for the application of SILC to polarisation anisotropies through an extension to spin wavelets.Comment: 15 pages, 13 figures. Minor changes to match version published in MNRAS. Map products available at http://www.silc-cmb.or
    corecore