33 research outputs found

    Renal Cancer Stem Cells: Characterization and Targeted Therapies

    Get PDF
    Renal cell carcinoma (RCC) is a major neoplasm with high incidence in western countries. Tumors are heterogeneous and are composed of differentiated cancer cells, stromal cells, and cancer stem cells (CSCs). CSCs possess two main properties: self-renewal and proliferation. Additionally, they can generate new tumors once transplanted into immunodeficient mice. Several approaches have been described to identify them, through the expression of cell markers, functional assays, or a combination of both. As CSCs are involved in the resistance mechanisms to radio- and chemotherapies, several new strategies have been proposed to directly target CSCs in RCC. One approach drives CSCs to differentiate into cancer cells sensitive to conventional treatments, while the other proposes to eradicate them selectively. A series of innovative therapies aiming at eliminating CSCs have been designed to treat other types of cancer and have not been experimented with on RCC yet, but they reveal themselves to be promising. In conclusion, CSCs are an important player in carcinogenesis and represent a valid target for therapy in RCC patients

    CD44 is a physiological E-selectin ligand on neutrophils

    Get PDF
    The selectin family of adhesion molecules and their glycoconjugated ligands are essential for blood polymorphonuclear neutrophil (PMN) extravasation into inflammatory and infectious sites. However, E-selectin ligands on PMNs are not well characterized. We show here that CD44 immunopurified from G-CSF–differentiated 32D cells or from peripheral blood PMNs binds specifically to E-selectin. In contrast, CD44 extracted from bone marrow stromal or brain endothelial cell lines does not interact with E-selectin, suggesting cell-specific posttranslational modifications of CD44. PMN-derived CD44 binding activity is mediated by sialylated, α(1,3) fucosylated, N-linked glycans. CD44 enables slow leukocyte rolling on E-selectin expressed on inflamed endothelium in vivo and cooperates with P-selectin glycoprotein ligand–1 to recruit neutrophils into thioglycollate-induced peritonitis and staphylococcal enterotoxin A–injected skin pouch. CD44 extracted from human PMNs also binds to E-selectin. Moreover, we demonstrate that CD44 is hypofucosylated in PMNs from a patient with leukocyte adhesion deficiency type II, suggesting that it contributes to the syndrome. These findings thus suggest broader roles for CD44 in the innate immune response and uncover a potential new target for diseases in which selectins play a prominent role

    Podocyte Regeneration Driven by Renal Progenitors Determines Glomerular Disease Remission and Can Be Pharmacologically Enhanced

    Get PDF
    Podocyte loss is a general mechanism of glomerular dysfunction that initiates and drives the progression of chronic kidney disease, which affects 10% of the world population. Here, we evaluate whether the regenerative response to podocyte injury influences chronic kidney disease outcome. In models of focal segmental glomerulosclerosis performed in inducible transgenic mice where podocytes are tagged, remission or progression of disease was determined by the amount of regenerated podocytes. When the same model was established in inducible transgenic mice where renal progenitors are tagged, the disease remitted if renal progenitors successfully differentiated into podocytes, while it persisted if differentiation was ineffective, resulting in glomerulosclerosis. Treatment with BIO, a GSK3s inhibitor, significantly increased disease remission by enhancing renal progenitor sensitivity to the differentiation effect of endogenous retinoic acid. These results establish renal progenitors as critical determinants of glomerular disease outcome and a pharmacological enhancement of their differentiation as a possible therapeutic strategy

    Increased KL-6 levels in moderate to severe COVID-19 infection.

    Full text link
    peer reviewed[en] BACKGROUND: The global coronavirus disease 2019 (COVID-19) has presented significant challenges and created concerns worldwide. Besides, patients who have experienced a SARS-CoV-2 infection could present post-viral complications that can ultimately lead to pulmonary fibrosis. Serum levels of Krebs von den Lungen 6 (KL-6), high molecular weight human MUC1 mucin, are increased in the most patients with various interstitial lung damage. Since its production is raised during epithelial damages, KL-6 could be a helpful non-invasive marker to monitor COVID-19 infection and predict post-infection sequelae. METHODS: We retrospectively evaluated KL-6 levels of 222 COVID-19 infected patients and 70 healthy control. Serum KL-6, fibrinogen, lactate dehydrogenase (LDH), platelet-lymphocytes ratio (PLR) levels and other biological parameters were analyzed. This retrospective study also characterized the relationships between serum KL-6 levels and pulmonary function variables. RESULTS: Our results showed that serum KL-6 levels in COVID-19 patients were increased compared to healthy subjects (470 U/ml vs 254 U/ml, P 453.5 U/ml was associated with COVID-19 (AUC = 0.8415, P < 0.0001). KL-6 level was positively correlated with other indicators of disease severity such as fibrinogen level (r = 0.1475, P = 0.0287), LDH level (r = 0,31, P = 0,004) and PLR level (r = 0.23, P = 0.0005). However, KL-6 levels were not correlated with pulmonary function tests (r = 0.04, P = 0.69). CONCLUSIONS: KL-6 expression was correlated with several disease severity indicators. However, the association between mortality and long-term follow-up outcomes needs further investigation. More extensive trials are required to prove that KL-6 could be a marker of disease severity in COVID-19 infection
    corecore