88 research outputs found

    2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven COMsub\u3e2\u3c/sub\u3e Reduction

    Get PDF
    Covalent organic framework (COF) represents an emerging class of porous materials that have exhibited great potential in various applications, particularly in catalysis. In this work, we report a newly designed 2D COF with incorporated Re complex, which exhibits intrinsic light absorption and charge separation (CS) properties. We show that this hybrid catalyst can efficiently reduce CO2 to form CO under visible light illumination with high electivity (98%) and better activity than its homogeneous Re counterpart. More importantly, using advanced transient optical and X-ray absorption spectroscopy and in situ diffuse reflectance spectroscopy, we unraveled three key intermediates that are responsible for CS, the induction period, and rate limiting step in catalysis. This work not only demonstrates the potential of COFs as next generation photocatalysts for solar fuel conversion but also provide unprecedented insight into the mechanistic origins for light-driven CO2 reduction

    Selective Excited-State Dynamics in a Unique Set of Rationally Designed Ni Porphyrins

    Get PDF
    In this work, we report the design and photophysical properties of a unique class of Ni porphyrins, in which the tert-butyl benzene substituents at the meso positions of the macrocycle were tethered by ethers with alkyl linkers. This not only results in the permanently locked ruf distortion of the macrocycle but also enables the engineering of the degree of distortion through varying the length of alkyl linkers, which addressed the complication of uncertainty in the specific structural distortions that has long plagued the porphyrin photophysical community. Using advanced time-resolved optical and X-ray absorption spectroscopy, we observed tunability in the excited-state relaxation pathway depending on the degree of distortion and characterized the associated transient intermediate structure. These findings provide a new avenue to afford accessibility to a wide range of excited-state properties in nonplanar porphyrins

    I13 overrides resistance mediated by the T315I mutation in chronic myeloid leukemia by direct BCR-ABL inhibition

    Get PDF
    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a BCR-ABL fusion gene. Imatinib has significantly improved the treatment of CML as a first-generation tyrosine kinase inhibitor (TKIs). The T315I mutant form of BCR-ABL is the most common mutation that confers resistance to imatinib or the second-generation TKIs, resulting in poor clinical prognosis. In this work, we assessed the effect of a potent histone deacetylase (HDAC) inhibitor, I13, on the differentiation blockade in CML cells harboring T315I-mutated and wild-type BCR-ABL by MTT assay, flow cytometery, cell colony formation assay, mRNA Sequencing, Quantitative real-time PCR and Western blotting analysis. We found that I13 possessed highly potent activity against T315I-mutated BCR-ABL mutant-expressing cells and wild-type BCR-ABL-expressing cells. I13 induced cell differentiation and significantly suppressed the proliferation of these CML cells via the cell cycle G0/G1-phase accumulation. Moreover, it was revealed that I13 triggered the differentiation of BaF3-T315I cells, which was attributed to the block of the chronic myeloid leukemia signaling pathway via the depletion of BCR-ABL that was mediated by the inhibition of HDAC activity presented by the acetylation of histones H3 and H4. Taken together, I13 efficiently depleted BCR-ABL in CML cells expressing the BCR-ABL-T315I mutation, which blocked its function, serving as a scaffold protein that modulated the chronic myeloid leukemia signaling pathway mediating cell differentiation. The present findings demonstrate that I13 is a BCR-ABL modulator for the development of CML therapy that can override resistance caused by T315I-mutated BCR-ABL

    Research status of stability in dynamic process of laser-arc hybrid welding based on droplet transfer behavior : a review

    Get PDF
    With the synergistic effect of laser and arc heat sources, laser-arc hybrid welding (LAHW) technology can improve welding speed and penetration depth, and enhance gap-bridging ability. This review describes the fundamental concepts and characteristics of droplet transfer behavior in LAHW. Emphasis was placed on the physical interaction between the laser and arc and the effect of the combined laser/arc heat sources on the welding process. However, the physical understanding of these multivariable and complex interactions is still evolving. Through numerous research findings and summary, it is found that there are several critical factors, including the laser-to-arc distance, heat source leading mode, shielding gas composition, and laser power, affecting the droplet transfer characteristics. This review critically interprets the latest development in the basic understanding of LAHW. It lays great stress on the coupling effect of laser and arc in droplet transfer dynamic process of LAHW, and offers a direction for the future study and progress of LAHW. Significant fields for future research are also confirmed

    Forecasting hourly PM2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms

    No full text
    Accurate predictions of hourly PM2.5 concentrations are crucial for preventing the harmful effects of air pollution. In this study, a new decomposition-ensemble framework incorporating the variational mode decomposition method (VMD), econometric forecasting method (autoregressive integrated moving average model, ARIMA), and deep learning techniques (convolutional neural networks (CNN) and temporal convolutional network (TCN)) was developed to model the data characteristics of hourly PM2.5 concentrations. Taking the PM2.5 concentration of Lanzhou, Gansu Province, China as the sample, the empirical results demonstrated that the developed decomposition-ensemble framework is significantly superior to the benchmarks with the econometric model, machine learning models, basic deep learning models, and traditional decomposition-ensemble models, within one-, two-, or three-step-ahead. This study verified the effectiveness of the new prediction framework to capture the data patterns of PM2.5 concentration and can be employed as a meaningful PM2.5 concentrations prediction tool

    Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding

    No full text
    Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr3Si+γ-Ni+Cuss (Coating 1, Ni-26Cr-29Si), Cr6Ni16Si7+Ni2Si+Cuss (Coating 2, Ni-10Cr-30Si) and Cr3Ni5Si2+Cr2Ni3+Cuss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3

    Study on the total reactive compensation method of offshore wind farm

    No full text
    Wind power generation is one of the most mature and most developed conditions for power generation in new energy generation technology.Large capacity and long distance offshore wind power is the trend of future wind power development.Wind power generation is one of the most mature and commercialized power generation methods in the field of renewable energy utilization.Due to the rich characteristics of offshore wind resources and the urgent need for offshore wind power development projects all over the world, the transmission and interconnection of large-scale offshore wind farms has become a hot topic in the development and research of wind power.This paper focuses on the analysis of the reactive power compensation methods for offshore wind farms, and provides a reference for the construction of offshore wind farms

    Research on the design of power generation system for 50MV wind farm

    No full text
    With the rapid development of the global economy, wind power generation has attracted wide attention all over the world. With the rapid development of all kinds of new energy in the world, wind power generation has a huge international market and broad prospects for development. Based on the actual situation of the local wind power generation project in a city, this paper analyses the feasibility of the wind power generation system in the local area. According to the type selection and arrangement of various types of wind motors, a reasonable electrical wiring part is designed. The research shows that wind power is of high comprehensive value. Wind power plants can be built in areas with suitable geographical conditions and sufficient wind energy. After the completion of the above power generation projects, the advantage of local wind energy resources will be fundamentally changed into economic advantage
    • …
    corecore