8 research outputs found

    Lifetime of quasiparticles in hot QED plasmas

    Full text link
    The calculation of the lifetime of quasiparticles in a QED plasma at high temperature remains plagued with infrared divergences, even after one has taken into account the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of very soft, unscreened, magnetic photons, whose contribution is enhanced by the thermal Bose-Einstein occupation factor. The self energy diagrams which diverge in perturbation theory contain no internal fermion loops, but an arbitrary number of internal magnetostatic photon lines. By generalizing the Bloch-Nordsieck model at finite temperature, we can resum all the singular contributions of such diagrams, and obtain the correct long time behaviour of the retarded fermion propagator in the hot QED plasma: SR(t)exp{αTtlnωpt}S_R(t)\sim \exp\{-\alpha T \, t\, \ln\omega_pt\}, where ωp=eT/3\omega_p=eT/3 is the plasma frequency and α=e2/4π\alpha=e^2/4\pi.Comment: 13 pages, LaTe

    Medium-modified evolution of multiparticle production in jets in heavy-ion collisions

    Full text link
    The energy evolution of medium-modified average multiplicities and multiplicity fluctuations in quark and gluon jets produced in heavy-ion collisions is investigated from a toy QCD-inspired model. In this model, we use modified splitting functions accounting for medium-enhanced radiation of gluons by a fast parton which propagates through the quark gluon plasma. The leading contribution of the standard production of soft hadrons is found to be enhanced by the factor Ns\sqrt{N_s} while next-to-leading order (NLO) corrections are suppressed by 1/Ns1/\sqrt{N_s}, where the nuclear parameter Ns>1N_s>1 accounts for the induced-soft gluons in the hot medium. The role of next-to-next-to-leading order corrections (NNLO) is studied and the large amount of medium-induced soft gluons is found to drastically affect the convergence of the perturbative series. Our results for such global observables are cross-checked and compared with their limits in the vacuum and a new method for solving the second multiplicity correlator evolution equations is proposed.Comment: 21 pages and 8 figures, typo corrections, references adde

    Screening of mass singularities and finite soft-photon production rate in hot QCD

    Full text link
    The production rate of a soft photon from a hot quark-gluon plasma is computed to leading order at logarithmic accuracy. The canonical hard-thermal-loop resummation scheme leads to logarithmically divergent production rate due to mass singularities. We show that these mass singularities are screened by employing the effective hard-quark propagator, which is obtained through resummation of one-loop self-energy part in a self-consistent manner. The damping-rate part of the effective hard-quark propagator, rather than the thermal-mass part, plays the dominant role of screening mass singularities. Diagrams including photon--(hard-)quark vertex corrections also yield leading contribution to the production rate.Comment: 41pages, Figures are not include

    Lifetimes of quasiparticles and collective excitations in hot QED plasmas

    Get PDF
    The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is plagued with infrared divergences which are not eliminated by the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of longwavelength, quasistatic, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed in a non-perturbative treatement based on a generalization of the Bloch-Nordsieck model at finite temperature. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a {\it non-exponential} damping at large times: SR(t)exp{αTtlnωpt}S_R(t)\sim \exp\{-\alpha T t \ln\omega_pt\}, where ωp=eT/3\omega_p=eT/3 is the plasma frequency and α=e2/4π\alpha=e^2/4\pi.Comment: LaTex file, 57 pages, 11 eps figures include

    The Infrared Sensitivity of Screening and Damping in a Quark-Gluon Plasma

    Get PDF
    All the next-to-leading order contributions to the quasi-particle dispersion laws of a quark-gluon plasma which due to infrared singularities are sensitive to the magnetic-mass scale are calculated using Braaten-Pisarski resummation. These relative-order-gln(g)g\ln(g) corrections are shown here to generally contribute to the dynamical screening of gluonic fields with frequencies below the plasma frequency as well as to the damping of propagating gluonic and fermionic quasi-particles. In the limit of vanishing wave-vector the infrared singularities disappear, but in a way that raises the possibility for formally higher orders of the Braaten-Pisarski scheme to equally contribute at next-to-leading order when the wave-vector is of the order of or less than the magnetic-mass scale. This is argued to be a problem in particular for the fermionic damping rate.Comment: 19 pages (LaTeX), 1 figure (uuencoded postscript) included by epsf.st

    Damping rate of a fast fermion in hot QED

    Get PDF
    Baier R, Kobes R. Damping rate of a fast fermion in hot QED. Physical review D: Particles, fields, gravitation, and cosmology. 1994;50(9):5944-5950.The self-consistent determination of the damping rate of a fast moving fermion in a hot QED plasma is reexamined. We argue how a detailed investigation of the analytic properties of the retarded fermion Green's function motivated by the cutting rules at finite temperature may resolve ambiguities related to the proper definition of the mass-shell condition
    corecore