39 research outputs found

    Editorial: “Fifty years Annals of Forest Science”

    Get PDF
    International audienceKey MessageAnnals of Forest Scienceis publishing a series of review papers to celebrate 50 years of activities as a journal in forest and wood science. The reviews emphasize the extent to which forest and wood sciences changed and developed as a large array of disciplines devoted to complex objects with sometimes many conflicting issues

    ParamĂ©trisation du bilan hydrique et Ă©tablissement des flux d’eau et de nutriments dans des sĂ©quences de hĂȘtraies de plaine

    No full text
    ThĂšse soutenue le 7 fĂ©vrier 2005 Co-directeurs de thĂšse : Nys, C. Directeur de recherches - INRA de Nancy. UnitĂ© BiogĂ©ochimie des EcosystĂšmes Forestiers Granier, A. Directeur de recherches - INRA de Nancy. UMR Ecologie et Ecophysiologie forestiĂšres. Équipe Bioclimatologie forestiĂšre Bibliog. : n.p. [14 p.] Annexes : n.p. [11 p. numĂ©rotĂ©es A1 Ă  A8] Diffusion du document : totale DiplĂŽme : Dr. Ing

    Le numérique passé en revue

    No full text
    Passage en revue des enjeux, questionnements et impensés soulevés au cours du séminaire "Publier autrement" organisé par l'Inra en janvier 2017

    Le numérique passé en revue

    No full text
    Passage en revue des enjeux, questionnements et impensés soulevés au cours du séminaire "Publier autrement" organisé par l'Inra en janvier 2017

    DĂ©pĂ©rissement forestier en vallĂ©e du Rhin. Etude du bilan hydrique des chĂȘnaies de la forĂȘt domaniale de La Harth (Haut-Rhin) et impact des Ă©pisodes de sĂ©cheresse sur la croissance radiale des chĂȘnes

    No full text
    The purpose of this study was to identify and quantify soil water constraints in oaks stands from the Harth Forest and to evaluate their possible involvement in the recent decline of oaks (tree mortality and reduction of growth). Water shortage in oak-forest ecosystems in the Harth Forest has been quantify by soil water balance modelling (Granier et aL, 1999). taking into account both local pedological and climatic condition. Rainfall is highly variable form north (640 mm) to south (800 mm) of the forest. Extractable water from the soil of each of the 70 plots used for tree-ring measurements (BrĂ©da. 1998) has been calculated from soil description. Soils were sandy with high stones amount leading to low extractable water (80-100 mm). Leaf area index (LAI) of stand canopy and duration of leafly period have been measured. Transpiration of covering herb layer was measured using close chambers at different dates in the year. Transpiration was strongly related to the radiation reaching the herb layer : maximum transpiration of herb was observed before oak budburst but sharply decreased as LAI of oak canopy developed. The daily water balance proposed to ca1culate seasonal pattern of soil water content during the year was validated for the local condition by direct measurements of soil water content (TDR) and throughfalI. Extractable water was estimated in situ from soil water content measurements and water uptake was observed till 2 m depth. Soil water dynamic computed by the model compared weIl with observed measurements. Water balance was then reconstructed from 1964 by modelling. using daily climatic data. Radial growth as previously measured from tree-rings was reconstructed from monthly temperature and rainfall. Cumulated rainfaIl during May, June and July explained the largest part of year-to-year growth variability (46% for sessile oak. 41% for pedonculate oak). Nevertheless. during the recent time 0964-1994) exhibiting a decrease in radial growth and a dieback in oaks from both species. monthly c1imatic data were not suitable to reproduce year-to-year variability in tree-rings and differences between oak species. Drought events were then computed from retrospective modeIling of soil water balance for each of the 70 plots. using its own extractable water and LAI. An index of soil water deficit was computed from duration and intensity of water shortage during the leafly period. occurring below a threshold of soil water content inducing stomatal closure « 40% of extractable water). Soil water deficit was significantly correlated to radial growth. The reduction in radial growth of pedonculate oaks started during the 1972 drought event and then progressively decreased as compared to the one of sessile oaks after 1976, 1983 and 1985 period of water shortage. The most severe drought event from the last 30 years was quantify in 1989. which was probably responsible for oak ecosystems dieback leading to the establishment of the "Observatoire Ecologique de la Harth". Moreover, this study pointed out specifie response to climate of each oak species. pedonculate oak being more sensitive to the growth from the previous year. Finally. daily water balance ca1culation was significantly more efficient than monthly c1imatic data to detect water shortage reducing radial growth of both oak species.L'objectif de cette Ă©tude Ă©tait d'identifier et de quantifier les contraintes hydriques subies par les chĂȘnaies de la Harth et d'Ă©valuer leur rĂŽle dans les phĂ©nomĂšnes rĂ©cents de dĂ©pĂ©rissement (mortalitĂ© et perte de croissance) des chĂȘnes de ce massif. Les contraintes hydriques liĂ©es au contexte pĂ©do-climatique de la ForĂȘt de la Harth ont Ă©tĂ© quantifiĂ©es par modĂ©lisation mĂ©caniste de bilan hydrique (Granier et al, 1999). La pluviomĂ©trie varie fortement selon un gradient du nord (640 mm) au sud (800 mm). La rĂ©serve utile des sols de chacune des 70 placettes dendroĂ©cologiques a Ă©tĂ© estimĂ©e Ă  partir de descriptions pĂ©dologiques rĂ©alisĂ©es sur fosses. Les sols, Ă  texture sableuse et Ă  forte charge en cailloux, sont trĂšs filtrants et offrent une rĂ©serve utile faible (80-100 mm). Le couvert de chaque peuplement a Ă©tĂ© caractĂ©risĂ© en 1996 par son indice foliaire (LAI) et par la longueur de sa saison de vĂ©gĂ©tation. La transpiration d'une strate herbacĂ©e couvrante a Ă©tĂ© quantifiĂ©e Ă  diffĂ©rentes pĂ©riodes de la saison Ă  l'aide de chambres Ă  transpiration. Le rayonnement atteignant la strate herbacĂ©e conditionne l'intensitĂ© de cette transpiration : la transpiration herbacĂ©e maximum a Ă©tĂ© estimĂ©e Ă  3.5 mm.j-1 lors de journĂ©es Ă  fort rayonnement avant dĂ©bourrement des chĂȘnes; lorsque le couvert arborescent atteint son LAI maximum, la contribution de la strate herbacĂ©e devient nĂ©gligeable. Le modĂšle de bilan hydrique forestier journalier proposĂ© pour calculer l'Ă©volution saisonniĂšre de la rĂ©serve en eau du sol a Ă©tĂ© validĂ© par des mesures directes de l'humiditĂ© volumique du sol et les prĂ©cipitations sous couvert. Les mesures d'humiditĂ© volumique du sol, rĂ©alisĂ©es par TDR ont permis l'Ă©valuation in situ de la rĂ©serve utile et ont rĂ©vĂ©lĂ© des prĂ©lĂšvements racinaires jusqu'Ă  2 m de profondeur. Le modĂšle proposĂ© a montrĂ© une bonne cohĂ©rence avec les mesures rĂ©alisĂ©es in situ, autorisant l'utilisation de ce modĂšle pour une reconstruction rĂ©trospective du bilan hydrique. La croissance radiale des chĂȘnes a ensuite Ă©tĂ© reconstruite Ă  partir de donnĂ©es mensuelles de tempĂ©rature et de pluviomĂ©trie. La pluviomĂ©trie cumulĂ©e des mois de mai, juin et juillet explique la plus grande part de la variabilitĂ© interannuelle de croissance (460Al pour le sessile, 41% pour le pĂ©donculĂ©). Toutefois, sur la pĂ©riode rĂ©cente au cours de laquelle une perte de croissance et un dĂ©pĂ©rissement ont Ă©tĂ© constatĂ©s (1964-1994), les variables pluviomĂ©triques mensuelles n'expliquent pas la variance interannuelle de croissance, ni les Ă©carts entre espĂšces. Les Ă©pisodes de contrainte hydrique ont alors Ă©tĂ© reconstruits grĂące Ă  la modĂ©lisation du bilan hydrique journalier paramĂ©trĂ© pour chaque placette (rĂ©serve utile, indice foliaire) ; l'Ă©volution de la rĂ©serve en eau du sol a ainsi Ă©tĂ© Ă©valuĂ©e Ă  partir de chronologies climatiques quotidiennes remontant Ă  1964. Un indice de stress caractĂ©risant la durĂ©e et l'intensitĂ© du dĂ©ficit hydrique, dĂ©fini par rapport Ă  au seuil de rĂ©gulation de la transpiration de 0.4 * RU, a Ă©tĂ© calculĂ© pour chaque annĂ©e et chaque placette. Les variations inter-annuelles des indices de stress hydriques sont significativement corrĂ©lĂ©es aux variations de croissance radiale mises en Ă©vidence par l'Ă©tude dendroĂ©cologique du massif. La perte de croissance du chĂȘne pĂ©donculĂ© s'est amorcĂ©e lors de la sĂ©cheresse de 1972 et l'Ă©cart entre sa croissance et celle du chĂȘne sessile s'est accentuĂ© progressivement lors des dĂ©ficits hydriques de 1976, 1983 et 1985. La contrainte hydrique de l'annĂ©e 1989 a Ă©tĂ© la plus sĂ©vĂšre depuis 1964 et est sans doute responsable des fortes mortalitĂ©s ayant conduit Ă  la mise en place de l'Observatoire Ecologique de la Harth. Ces travaux ont de plus mis en Ă©vidence des diffĂ©rences de rĂ©ponse au climat entre les deux espĂšces de chĂȘnes, la croissance du pĂ©donculĂ© d'une annĂ©e Ă©tant plus fortement conditionnĂ©e par la croissance de l'annĂ©e prĂ©cĂ©dente. Le calcul de bilan hydrique journalier s'est montrĂ© beaucoup plus puissant que les pluviomĂ©tries mensuelles pour dĂ©tecter les contraintes hydriques affectant significativement la croissance radiale des deux espĂšces de chĂȘnes

    Vulnerability to forest decline in a context of climate changes: new prospects about an old question in forest ecology

    No full text
    International audience1 Why focus on vulnerability?Forest research has been particularly efficient in detecting the impacts of variability and long-term trends of climate. It is indeed in these ecosystems gathering perennial plants with a long lifespan that the first visible impacts of climate change have been convincingly documented. At first, positive changes in productivity were detected (Becker 1989; Becker et al. 1994; Badeau et al. 1995; Badeau et al. 1996). Improved growth conditions linked to warming, to nitrogen deposition and to increased atmospheric CO2 were perceived fairly early and were also heterogeneous among biogeographical areas due to local limiting factors (trophic or climatic). The first thoughts about the Dryade project were initiated during 2006. In France, the first simulations of potential impacts of available climate scenarios generated awareness, criticism and concerns among managers and foresters (Carbofor, Loustau et al. 2005; Badeau et al. 2010). In addition to climate trends, extreme events had already been identified as a major cause of forest dieback. All major drought events were historically followed by cycles of dieback (Innes et al. 1989; Jones et al. 1993; Landmann 1994; Beniston and Innes 1998; Thomas et al. 2002; Liang et al. 2003; Jurskis 2005). In France, forest dysfunctions induced by the drought events of 2003–2006 were mostly reversible (growth decrease, temporary degradation of crown conditions) but sometimes also irreversible (tree mortality). Several indicators of forest health surveys pointed to a degradation of forest health in France and Europe: abnormal increases in tree mortality (Pauly and Belrose 2005), decline of crown conditions (Lloret et al. 2004; Pauly and Belrose 2005; Belrose et al. 2004, 2006; Carnicer et al. 2011) and upsurge in biotic hazards (Nageleisen 2004; Piou et al. 2006; Rouault et al. 2006)
    corecore