40 research outputs found

    Market-based Control of Air-Conditioning Loads with Switching Constraints for Providing Ancillary Services

    Full text link
    Air-conditioning loads (ACLs) are among the most promising demand side resources for their thermal storage capacity and fast response potential. This paper adopts the principle of market-based control (MBC) for the ACLs to participate in the ancillary services. The MBC method is suitable for the control of distributed ACLs because it can satisfy diversified requirements, reduce the communication bandwidth and protect users' privacy. The modified bidding and clearing strategies proposed in this paper makes it possible to adjust the switching frequency and strictly satisfy the lockout time constraint for mechanical wear reduction and device protection, without increasing the communication traffic and computational cost of the control center. The performance of the ACL cluster in two typical ancillary services is studied to demonstrate the effect of the proposed method. The case studies also investigate how the control parameters affect the response performance, comfort level and switching frequency.Comment: 5 pages, conferenc

    Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification

    Get PDF
    Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship

    Topoisomerase Inhibitors Addressing Fluoroquinolone Resistance in Gram-Negative Bacteria.

    Get PDF
    Since their discovery over 5 decades ago, quinolone antibiotics have found enormous success as broad spectrum agents that exert their activity through dual inhibition of bacterial DNA gyrase and topoisomerase IV. Increasing rates of resistance, driven largely by target-based mutations in the GyrA/ParC quinolone resistance determining region, have eroded the utility and threaten the future use of this vital class of antibiotics. Herein we describe the discovery and optimization of a series of 4-(aminomethyl)quinolin-2(1H)-ones, exemplified by 34, that inhibit bacterial DNA gyrase and topoisomerase IV and display potent activity against ciprofloxacin-resistant Gram-negative pathogens. X-ray crystallography reveals that 34 occupies the classical quinolone binding site in the topoisomerase IV-DNA cleavage complex but does not form significant contacts with residues in the quinolone resistance determining region

    Permutation Entropy-Based Analysis of Temperature Complexity Spatial-Temporal Variation and Its Driving Factors in China

    No full text
    Air temperature fluctuation complexity (TFC) describes the uncertainty of temperature changes. The analysis of its spatial and temporal variation is of great significance to evaluate prediction uncertainty of the regional temperature trends and the climate change. In this study, annual-TFC from 1979–2017 and seasonal-TFC from 1983–2017 in China were calculated by permutation entropy (PE). Their temporal trend is described by the Mann-Kendall method. Driving factors of their spatial variations are explored through GeoDetector. The results show that: (1). TFC shows a downward trend generally, with obvious time variation. (2). The spatial variation of TFC is mainly manifested in the differences among the five sub-regions in China. There is low uncertainty in the short-term temperature trends in the northwest and southeast. The northeastern and southwestern regions show high uncertainties. TFC in the central region is moderate. (3). The vegetation is the main factor of spatial variation, followed by the climate and altitude, and the latitude and terrain display the lowest impact. The interactions of vegetation-altitude, vegetation-climate and altitude-latitude can interpret more than 50% of the spatial variations. These results provide insights into causes and mechanisms of the complexity of the climate system. They can help to determine the influencing process of various factors

    Use of Entropy in Developing SDG-based Indices for Assessing Regional Sustainable Development: A Provincial Case Study of China

    No full text
    Sustainable development appears to be the theme of our time. To assess the progress of sustainable development, a simple but comprehensive index is of great use. To this end, a multivariate index of sustainable development was developed in this study based on indicators of the United Nations Sustainable Development Goals (SDGs). To demonstrate the usability of this developed index, we applied it to Fujian Province, China. According to the China SDGs indicators and the Fujian situation, we divided the SDGs into three dimensions and selected indicators based on these dimensions. We calculated the weights and two indices with the entropy weight coefficient method based on collecting and processing of data from 2007 to 2017. We assessed and analyzed the sustainable development of Fujian with two indices and we drew three main conclusions. From 2007 to 2017, the development index of Fujian showed an increasing trend and the coordination index of Fujian showed a fluctuating trend. It is difficult to smoothly improve the coordination index of Fujian because the development speeds of Goal 3 (Good Health and Well-being) and Goal 16 (Peace, Justice, and Strong Institutions) were low. The coordination index of Fujian changed from strong coordination to medium coordination from 2011 to 2012 because the development speed of the environmental dimension suddenly improved. It changed from strong coordination to medium coordination from 2015 to 2016 because the values of the development index of the social dimension were decreasing. To the best of our knowledge, these are the first SDGs-based multivariate indices of sustainable development for a region of China. These indices are applicable to different regions

    Geographic Complexity: Concepts, Theories, and Practices

    No full text
    Geography is a fundamentally important discipline that provides a framework for understanding the complex surface of our Earth [...

    Geographic Complexity: Concepts, Theories, and Practices

    No full text
    Geography is a fundamentally important discipline that provides a framework for understanding the complex surface of our Earth [...
    corecore