1,765 research outputs found

    Maintaining CD4/CD8 ratio and Th1-CTL subsets of chimeric antigen receptor (CAR)-T cells in serum-free culture conditions

    Get PDF
    Chimeric antigen receptor (CAR) T cells therapy is a promising strategy that significantly controlled the progress of cancer diseases. CAR-T cells could kill cancer cells through cellular immune response; therefore, CD8+ cytotoxic T cells are critical for CAR-T cell therapy. However, recent papers reported that CD4+ T helper cells were important for the response and maintenance of CAR-T cells in vivo. Here, we developed a serum-free CAR-T cell preparation process that maintained the T cell population and controlled the T cell subsets. The CD4+ and CD8+ T cell population in CAR-T cells were maintained at averagely 59.4 % and 34.6%, and the major T cell subsets were Th1 cells and cytotoxic T lymphocytes (CTLs), implying the potentially high cellular immune response. To verifying whether the prepared CAR-T cells were exhausted, the expression of several immune checkpoint markers was determined. Of interest, only less than 20% of CAR-T cells at endpoint were PD-1+ or CTLA4+, but more than 40% of CAR-T cells at the endpoint were TIM-3+, implying most CAR-T cells were not exhausted. These CAR-T cells produced more than 1 ng/mL of IFN-γ in the response to the antigen. Altogether, CAR-T cells could be prepared in our serum-free process in the controlling of T cell subsets, leading to potential high therapeutic potency. Please click Additional Files below to see the full abstract

    In vitro high expansion of chimeric antigen receptor (CAR)-T cells in serum-free process conditions

    Get PDF
    Manufacturing process is an important and complex factor for preparing chimeric antigen receptor (CAR) T cells for therapy. Although serum was widely applied in the culture or expansion of T cells, the quality of serum could be varied from batch to batch, leading to the variation of T cell expansion and quality. In addition, the safety of pathogens from serum and Chemistry, Manufacturing, and Control (CMC) were required to be considered. To overcome the disadvantages of serum application in T cell culture, serum-free and xeno-free culture conditions were required. We intended to develop a rapid serum-free culture condition for the expansion of immune T cells ex vivo. In our optimized serum-free condition, CAR-T cells could be expanded to about 100-200 times to the initial cell number after 6-day culture and the cell viability of all specimens was above 98%. Of interest, the percentage of CAR+ population in all specimens was increases, and the T cell pollutions could be maintained at averagely about 35-40% of CD8+ T cells and averagely about 50-55% of CD4+ T cells after culture. Taken together, our conditions could be applied in the expansion of CAR-T cells for cell therapy to support the minimum requirement of blood or cell samples from patients and to maintain the T cell population. Please click Additional Files below to see the full abstract

    Ser-634 and Ser-636 of Kaposi’s Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites

    Get PDF
    The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA

    Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement

    Get PDF
    To quantify the biomechanical properties of the bovine periodontal ligament (PDL) in postmortem sections and to apply these properties to study orthodontic tooth intrusion using finite element analysis (FEA). We hypothesized that PDL’s property inherited heterogeneous (anatomical dependency) and nonlinear stress-strain behavior that could aid FEA to delineate force vectors with various rectangular archwires

    Recombinant expression and functional analysis of a Chlamydomonas reinhardtii bacterial-type phosphoenolpyruvate carboxylase gene fragment

    Get PDF
    To investigate the function of a bacterial-type phosphoenolpyruvate carboxylase (PEPC2) derived from photosynthetically-grown Chlamydomonas reinhardtii, a fragment of the pepc2 gene was cloned and expressed in Escherichia coli. After optimal induction for 6 h, PEPC activity in the reverse mutant was lower than wild type (0.9 vs. 1.7 U/mg protein), and soluble protein was also lower than wild type (119 vs. 186 mg/g dry wt). In contrast, the total lipid content was increased from 56 (in wild type) to 71 mg/g dry wt, despite the growth rate being slightly diminished. The changes in PEPC activity, soluble protein and total lipid in the forward mutant were the opposite (2.4 U/mg, 230 mg/g, and 44 mg/g dry wt, respectively). Together, these data indicate that PEPC may function as a metabolic pivot in the regulation of protein and lipid accumulation in this alga
    corecore