37 research outputs found

    Cassava genome from a wild ancestor to cultivated varieties

    Get PDF
    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology

    Hydrogen Sulfide Promotes Cardiomyocyte Proliferation and Heart Regeneration via ROS Scavenging

    No full text
    Neonatal mouse hearts can regenerate completely in 21 days after cardiac injury, providing an ideal model to exploring heart regenerative therapeutic targets. The oxidative damage by Reactive Oxygen Species (ROS) is one of the critical reasons for the cell cycle arrest of cardiomyocytes (CMs), which cause mouse hearts losing the capacity to regenerate in 7 days or shorter after birth. As an antioxidant, hydrogen sulfide (H2S) plays a protective role in a variety of diseases by scavenging ROS produced during the pathological processes. In this study, we found that blocking H2S synthesis by PAG (H2S synthase inhibitor) suspended heart regeneration and CM proliferation with ROS deposition increase after cardiac injury (myocardial infarction or apex resection) in 2-day-old mice. NaHS (a H2S donor) administration improved heart regeneration with CM proliferation and ROS elimination after myocardial infarction in 7-day-old mice. NaHS protected primary neonatal mouse CMs from H2O2-induced apoptosis and promoted CM proliferation via SOD2-dependent ROS scavenging. The oxidative DNA damage in CMs was reduced with the elimination of ROS by H2S. Our results demonstrated for the first time that H2S promotes heart regeneration and identified NaHS as a potent modulator for cardiac repair

    Optimization of the Steam Explosion Pretreatment Effect on Total Flavonoids Content and Antioxidative Activity of Seabuckthom Pomace by Response Surface Methodology

    No full text
    Steam explosion pretreatment was conducted on seabuckthom pomace. Response surface methodology was used to optimize the treatment conditions of steam explosion, including steam pressure, duration and particle size. After this, the content of total flavonoids and the antioxidant capacity of total flavonoids were investigated. Results showed that when the steam pressure was 2.0 MPa, duration was 88 s and a sieving mesh size was 60, the total flavonoids content in seabuckthorm reached a maximum of 24.74 ± 0.71 mg CAE/g, an increase of 246% compared with that without steam explosion treatment (7.14 ± 0.42 mg CAE/g). Also, DPPH and ·OH free radical scavenging ability showed significant improvement, with an IC50 decrease to 13.53 μg/mL and 4.32 μg/mL, respectively, far lower than that in original samples. Through the scanning electron microscope, the surface of seabuckthom pomace after steam explosion was crinkled, curly, and holey. Our study showed that the content of total flavonoids in seabuckthom pomace could be obviously promoted and the antioxidant capacity of total flavonoids also improved significantly, after applying steam explosion pretreatment to seabuckthom pomace, making this approach meaningful for the reuse of seabuckthom pomace resources

    Structural Characteristic and In-Vitro Anticancer Activities of Dandelion Leaf Polysaccharides from Pressurized Hot Water Extraction

    No full text
    Dandelion (Taraxacum mongolicum Hand.-Mazz.) is a medicinal and edible plant. Dandelion has great development value for its health promoting benefits; additionally, Dandelion grows almost anywhere in the world. In this study, we report the structural characteristics and anti-cancer activity of novel dandelion leaf polysaccharides extracted by pressurized hot water extraction at 120 °C (DLP120) with Mw relative to dextran of 1.64 × 106 Da. Structural analysis indicated that DLP120 is a complex polysaccharide composed of pectin and arabinogalactan. It was mainly composed of arabinose (32.35 mol%) and galactose (44.91 mol%). The main glycosidic linkages of DLP120 were 4-β-D-Galp, 4-α-D-GalpA, T-β-D-Galp, 5-α-L-Araf, 3,5-α-L-Araf, and T-α-L-Araf. In vitro, DLP120 inhibited HepG2 cell proliferation in a dose-dependent manner by inducing cell apoptosis. Cell cycle detection results revealed that DLP120 mainly arrests the cell cycle in S phase. Cells treated with DLP120 displayed obvious apoptotic morphology, including cell volume shrinks and cytoskeleton breaks down. In short, DLP120 has potential as an anti-cancer agent
    corecore