1,584 research outputs found
Retrodictive states and two-photon quantum imaging
We use retrodictive quantum theory to analyse two-photon quantum imaging
systems. The formalism is particularly suitable for calculating conditional
probability distributions.Comment: 5 pages, 3 figure
Single-shot measurement of quantum optical phase
Although the canonical phase of light, which is defined as the complement of
photon number, has been described theoretically by a variety of distinct
approaches, there have been no methods proposed for its measurement. Indeed
doubts have been expressed about whether or not it is measurable. Here we show
how it is possible, at least in principle, to perform a single-shot measurement
of canonical phase using beam splitters, mirrors, phase shifters and
photodetectors.Comment: This paper was published in PRL in 2002 but, at the time, was not
placed on the archive. It is included now to make accessing this paper easie
Retrodictive quantum optical state engineering
Although it has been known for some time that quantum mechanics can be
formulated in a way that treats prediction and retrodiction on an equal
footing, most attention in engineering quantum states has been devoted to
predictive states, that is, states associated with the a preparation event.
Retrodictive states, which are associated with a measurement event and
propagate backwards in time, are also useful, however. In this paper we show
how any retrodictive state of light that can be written to a good approximation
as a finite superposition of photon number states can be generated by an
optical multiport device. The composition of the state is adjusted by
controlling predictive coherent input states. We show how the probability of
successful state generation can be optimised by adjusting the multiport device
and also examine a versatile configuration that is useful for generating a
range of states.Comment: 14 pages, 1 figur
Design and preliminary tests of a blade tip air mass injection system for vortex modification and possible noise reduction on a full-scale helicopter rotor
Full-scale tests were conducted on the Langley helicopter rotor test facility as part of a study to evaluate the effectiveness of a turbulent blade tip air mass injection system in alleviating the impulsive noise (blade slap) caused by blade-vortex interaction. Although blade-slap conditions could not be induced during these tests, qualitative results from flow visualization studies using smoke showed that the differential velocity between the jet velocity and the rotor tip speed was a primary parameter controlling the vortex modification
The fundamental cycle of concept construction underlying various theoretical frameworks
In this paper, the development of mathematical concepts over time is considered. Particular reference is given to the shifting of attention from step-by-step procedures that are performed in time, to symbolism that can be manipulated as mental entities on paper and in the mind. The development is analysed using different theoretical perspectives, including the SOLO model and various theories of concept construction to reveal a fundamental cycle underlying the building of concepts that features widely in different ways of thinking that occurs throughout mathematical learning
Creation of macroscopic quantum superposition states by a measurement
We propose a novel protocol for the creation of macroscopic quantum
superposition (MQS) states based on a measurement of a non-monotonous function
of a quantum collective variable. The main advantage of this protocol is that
it does not require switching on and off nonlinear interactions in the system.
We predict this protocol to allow the creation of multiatom MQS by measuring
the number of atoms coherently outcoupled from a two-component (spinor)
Bose-Einstein condensate.Comment: 4 pages (revtex4), 2 figure
Phase Operator for the Photon Field and an Index Theorem
An index relation is
satisfied by the creation and annihilation operators and of a
harmonic oscillator. A hermitian phase operator, which inevitably leads to
, cannot be consistently
defined. If one considers an dimensional truncated theory, a hermitian
phase operator of Pegg and Barnett which carries a vanishing index can be
defined. However, for arbitrarily large , we show that the vanishing index
of the hermitian phase operator of Pegg and Barnett causes a substantial
deviation from minimum uncertainty in a characteristically quantum domain with
small average photon numbers. We also mention an interesting analogy between
the present problem and the chiral anomaly in gauge theory which is related to
the Atiyah-Singer index theorem. It is suggested that the phase operator
problem related to the above analytic index may be regarded as a new class of
quantum anomaly. From an anomaly view point ,it is not surprising that the
phase operator of Susskind and Glogower, which carries a unit index, leads to
an anomalous identity and an anomalous commutator.Comment: 32 pages, Late
Measuring the elements of the optical density matrix
Most methods for experimentally reconstructing the quantum state of light
involve determining a quasiprobability distribution such as the Wigner
function. In this paper we present a scheme for measuring individual density
matrix elements in the photon number state representation. Remarkably, the
scheme is simple, involving two beam splitters and a reference field in a
coherent state.Comment: 6 pages and 1 figur
Growth, yield and Fusarium wilt resistance of six FHIA tetraploid bananas (Musa spp.) grown in the Australian subtropics
Six tetraploid hybrids from Fundación Hondureña de Investigación AgrÃcola (FHIA) were evaluated in Australia over a five year period. They included three AAAA hybrids (FHIA-02, FHIA-17 and FHIA-23) and three AAAB hybrids (FHIA-01, FHIA-18 and SH-3640.10) and they were compared with industry standards, ‘Williams’ (AAA, Cavendish subgroup) and ‘Lady Finger’ (AAB, Pome subgroup). They were screened for their resistance to Fusarium wilt race 1 and subtropical race 4 caused by the pathogen Fusarium oxysporum f.sp. cubense and they were also grown for several cycles on farms not infested with Fusarium wilt to record their agronomic characteristics. The AAAB hybrids, all derived from female parent ‘Prata Anã’ (AAB, Pome subgroup) were the most resistant to both races of Fusarium wilt and were very productive in the subtropics. They were significantly more productive than ‘Lady Finger’, which was susceptible to both races of Fusarium wilt. The AAAA hybrids, with the exception of FHIA-02 which was very susceptible to Fusarium wilt and displayed the poorest agronomic traits of the six hybrids, produced bunch weights as good as Cavendish but were significantly slower to cycle. FHIA-17 and FHIA-23, both derived from the female parent ‘Highgate’ (AAA, Gros Michel subgroup), were also significantly more resistant to Fusarium wilt than ‘Gros Michel’, while FHIA-17 demonstrated a level of resistance similar to ‘Williams’ and FHIA-23 was intermediate between ‘Lady Finger’ and ‘Williams
- …