3,939 research outputs found

    Tunable diffusion of magnetic particles in a quasi-one-dimensional channel

    Full text link
    The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field.Comment: 9 pages, 13 figures, to appear in Phys. Rev. E (2013

    Dynamics of molecular nanomagnets in time-dependent external magnetic fields: Beyond the Landau-Zener-St\"{u}ckelberg model

    Full text link
    The time evolution of the magnetization of a magnetic molecular crystal is obtained in an external time-dependent magnetic field, with sweep rates in the kT/s range. We present the 'exact numerical' solution of the time dependent Schr\"{o}dinger equation, and show that the steps in the hysteresis curve can be described as a sequence of two-level transitions between adiabatic states. The multilevel nature of the problem causes the transition probabilities to deviate significantly from the predictions of the Landau-Zener-St\"{u}ckelberg model. These calculations allow the introduction of an efficient approximation method that accurately reproduces the exact results. When including phase relaxation by means of an appropriate master equation, we observe an interplay between coherent dynamics and decoherence. This decreases the size of the magnetization steps at the transitions, but does not modify qualitatively the physical picture obtained without relaxation.Comment: 8 pages, 7 figure

    Exciton trapping in magnetic wire structures

    Full text link
    The lateral magnetic confinement of quasi two-dimensional excitons into wire like structures is studied. Spin effects are take into account and two different magnetic field profiles are considered, which experimentally can be created by the deposition of a ferromagnetic stripe on a semiconductor quantum well with magnetization parallel or perpendicular to the grown direction of the well. We find that it is possible to confine excitons into one-dimensional (1D) traps. We show that the dependence of the confinement energy on the exciton wave vector, which is related to its free direction of motion along the wire direction, is very small. Through the application of a background magnetic field it is possible to move the position of the trapping region towards the edge of the ferromagnetic stripe or even underneath the stripe. The exact position of this 1D exciton channel depends on the strength of the background magnetic field and on the magnetic polarisation direction of the ferromagnetic film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte

    Variations of the Mid-IR Aromatic Features Inside and Among Galaxies

    Get PDF
    We present the results of a systematic study of mid-IR spectra of Galactic regions, Magellanic HII regions, and galaxies of various types (dwarf, spiral, starburst), observed by the satellites ISO and Spitzer. We study the relative variations of the 6.2, 7.7, 8.6 and 11.3 micron features inside spatially resolved objects (such as M82, M51, 30 Doradus, M17 and the Orion Bar), as well as among 90 integrated spectra of 50 objects. Our main results are that the 6.2, 7.7 and 8.6 micron bands are essentially tied together, while the ratios between these bands and the 11.3 micron band varies by one order of magnitude. This implies that the properties of the PAHs are remarkably universal throughout our sample, and that the relative variations of the band ratios are mainly controled by the fraction of ionized PAHs. In particular, we show that we can rule out both the modification of the PAH size distribution, and the mid-infrared extinction, as an explanation of these variations. Using a few well-studied Galactic regions (including the spectral image of the Orion Bar), we give an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio G0/ne.Tgas^0.5, therefore providing a useful quantitative diagnostic tool of the physical conditions in the regions where the PAH emission originates. Finally, we discuss the physical interpretation of the I(6.2)/I(11.3) ratio, on galactic size scales.Comment: Accepted by the ApJ, 67 pages, 70 figure

    Dirac and Klein-Gordon particles in one-dimensional periodic potentials

    Full text link
    We evaluate the dispersion relation for massless fermions, described by the Dirac equation, and for zero-spin bosons, described by the Klein-Gordon equation, moving in two dimensions and in the presence of a one-dimensional periodic potential. For massless fermions the dispersion relation shows a zero gap for carriers with zero momentum in the direction parallel to the barriers in agreement with the well-known "Klein paradox". Numerical results for the energy spectrum and the density of states are presented. Those for fermions are appropriate to graphene in which carriers behave relativistically with the "light speed" replaced by the Fermi velocity. In addition, we evaluate the transmission through a finite number of barriers for fermions and zero-spin bosons and relate it with that through a superlattice.Comment: 9 pages, 12 figure

    Hysteresis and re-entrant melting of a self-organized system of classical particles confined in a parabolic trap

    Full text link
    A self-organized system composed of classical particles confined in a two-dimensional parabolic trap and interacting through a potential with a short-range attractive part and long-range repulsive part is studied as function of temperature. The influence of the competition between the short-range attractive part of the inter-particle potential and its long-range repulsive part on the melting temperature is studied. Different behaviors of the melting temperature are found depending on the screening length (κ\kappa) and the strength (BB) of the attractive part of the inter-particle potential. A re-entrant behavior and a thermal induced phase transition is observed in a small region of (κ,B\kappa,B)-space. A structural hysteresis effect is observed as a function of temperature and physically understood as due to the presence of a potential barrier between different configurations of the system.Comment: 8 pages, 6 figure

    Polaron effects in electron channels on a helium film

    Full text link
    Using the Feynman path-integral formalism we study the polaron effects in quantum wires above a liquid helium film. The electron interacts with two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one dimension (1D) by an harmonic potential. The obtained results are valid for arbitrary temperature (TT), electron-phonon coupling strength (α\alpha ), and lateral confinement (ω0\omega_{0}). Analytical and numerical results are obtained for limiting cases of TT, α\alpha , and ω0\omega_{0}. We found the surprising result that reducing the electron motion from 2D to quasi-1D makes the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Superconducting transition temperature of Pb nanofilms: Impact of the thickness-dependent oscillations of the phonon mediated electron-electron coupling

    Full text link
    To date, several experimental groups reported measurements of the thickness dependence of T_c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T_c-oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T_c-oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab

    Beats of the Magnetocapacitance Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present calculations on the magnetocapacitance of the two-dimensional electron gas in a lateral semiconductor superlattice under two-dimensional weak periodic potential modulation in the presence of a perpendicular magnetic field. Adopting a Gaussian broadening of magnetic-field-dependent width in the density of states, we present explicit and simple expressions for the magnetocapacitance, valid for the relevant weak magnetic fields and modulation strengths. As the modulation strength in both directions increase, beats of the magnetocapacitance oscillations are observed, in the low magnetic field range (Weiss-oscillations regime), which are absent in the one-dimensional weak modulation case.Comment: 11 pages, 7 figures, accepted by Mod. Phys. Lett. B (March 2007
    corecore