12,554 research outputs found
Positively charged magneto-excitons in a semiconductor quantum well
A variational calculation of the lower singlet and triplet states of
positively charged excitons (trions) confined to a single quantum well and in
the presence of a perpendicular magnetic field is presented. We study the
dependence of the energy levels and of the binding energy on the well width and
on the magnetic field strength. Our results are compared with the available
experimental data and show a good qualitative and quantitative agreement. A
singlet-triplet crossing is found which for a 200 \AA wide GaAs is predicted to
occur for B = 15 T.Comment: 5 figs. Submitted to PR
Dirac electrons in a Kronig-Penney potential: dispersion relation and transmission periodic in the strength of the barriers
The transmission T and conductance G through one or multiple one-dimensional,
delta-function barriers of two-dimensional fermions with a linear energy
spectrum are studied. T and G are periodic functions of the strength P of the
delta-function barrier V(x,y) / hbar v_F = P delta(x). The dispersion relation
of a Kronig-Penney (KP) model of a superlattice is also a periodic function of
P and causes collimation of an incident electron beam for P = 2 pi n and n
integer. For a KP superlattice with alternating sign of the height of the
barriers the Dirac point becomes a Dirac line for P = (n + 1/2) pi.Comment: 5 pages, 6 figure
Exciton trapping in magnetic wire structures
The lateral magnetic confinement of quasi two-dimensional excitons into wire
like structures is studied. Spin effects are take into account and two
different magnetic field profiles are considered, which experimentally can be
created by the deposition of a ferromagnetic stripe on a semiconductor quantum
well with magnetization parallel or perpendicular to the grown direction of the
well. We find that it is possible to confine excitons into one-dimensional (1D)
traps. We show that the dependence of the confinement energy on the exciton
wave vector, which is related to its free direction of motion along the wire
direction, is very small. Through the application of a background magnetic
field it is possible to move the position of the trapping region towards the
edge of the ferromagnetic stripe or even underneath the stripe. The exact
position of this 1D exciton channel depends on the strength of the background
magnetic field and on the magnetic polarisation direction of the ferromagnetic
film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte
"Better Safe than Sorry" - Individual Risk-free Pension Schemes in the European Union - Macroeconomic Benefits, the Mobile Working Citizen's Perspective and Why Nots
Variations between the diverse pension systems in the member states of the European Union hamper labour market mobility, across country borders but also within the countries of the European Union. From a macroeconomic perspective, and in the light of demographic pressure, this paper argues that allowing individual instead of collective pension building would greatly improve labour market flexibility and thus enhance the functioning of the monetary union. I argue that working citizens would benefit, for three reasons, from pension saving in a risk-free savings account. First, citizens would have a clear picture of the accumulation of their own pension savings throughout their working life. Second, they would pay hardly any extra costs and, third, once retired they would not be subject to the whims of government or other pension fund managers. This paper investigates the feasibility of individual pension building under various parameter settings by calculating the pension saved during a working life and the pension dis-saved after retirement. The findings show that there are no reasons why the European Union and individual member states should not allow individual risk-free pension savings accounts. This would have macroeconomic benefits and provide a solid pension provision that can enhance mobility, instead of engaging workers in different mandatory collective pension schemes that exist around in the European Union
Effect of turbulence on electron cyclotron current drive and heating in ITER
Non-linear local electromagnetic gyrokinetic turbulence simulations of the
ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The
turbulent transport is examined in regions of velocity space characteristic of
electrons heated by electron cyclotron waves. Electromagnetic fluctuations and
sub-dominant micro-tearing modes are found to contribute significantly to the
transport of the accelerated electrons, even though they have only a small
impact on the transport of the bulk species. The particle diffusivity for
resonant passing electrons is found to be less than 0.15 m^2/s, and their heat
conductivity is found to be less than 2 m^2/s. Implications for the broadening
of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio
On the extrapolation to ITER of discharges in present tokamaks
An expression for the extrapolated fusion gain G = Pfusion /5 Pheat (Pfusion
being the total fusion power and Pheat the total heating power) of ITER in
terms of the confinement improvement factor (H) and the normalised beta (betaN)
is derived in this paper. It is shown that an increase in normalised beta can
be expected to have a negative or neutral influence on G depending on the
chosen confinement scaling law. Figures of merit like H betaN / q95^2 should be
used with care, since large values of this quantity do not guarantee high
values of G, and might not be attainable with the heating power installed on
ITER.Comment: 6 Pages, 3 figures, Submitted to Nuclear Fusion on the 29th of
November 200
Beats of the Magnetocapacitance Oscillations in Lateral Semiconductor Superlattices
We present calculations on the magnetocapacitance of the two-dimensional
electron gas in a lateral semiconductor superlattice under two-dimensional weak
periodic potential modulation in the presence of a perpendicular magnetic
field. Adopting a Gaussian broadening of magnetic-field-dependent width in the
density of states, we present explicit and simple expressions for the
magnetocapacitance, valid for the relevant weak magnetic fields and modulation
strengths. As the modulation strength in both directions increase, beats of the
magnetocapacitance oscillations are observed, in the low magnetic field range
(Weiss-oscillations regime), which are absent in the one-dimensional weak
modulation case.Comment: 11 pages, 7 figures, accepted by Mod. Phys. Lett. B (March 2007
A perturbative approach to Dirac observables and their space-time algebra
We introduce a general approximation scheme in order to calculate gauge
invariant observables in the canonical formulation of general relativity. Using
this scheme we will show how the observables and the dynamics of field theories
on a fixed background or equivalently the observables of the linearized theory
can be understood as an approximation to the observables in full general
relativity. Gauge invariant corrections can be calculated up to an arbitrary
high order and we will explicitly calculate the first non--trivial correction.
Furthermore we will make a first investigation into the Poisson algebra between
observables corresponding to fields at different space--time points and
consider the locality properties of the observables.Comment: 23 page
Instability due to long range Coulomb interaction in a liquid of polarizable particles (polarons, etc.)
The interaction Hamiltonian for a system of polarons a la Feynman in the
presence of long range Coulomb interaction is derived and the dielectric
function is computed in mean field. For large enough concentration a liquid of
such particles becomes unstable. The onset of the instability is signaled by
the softening of a collective optical mode in which all electrons oscillate in
phase in their respective self-trapping potential. We associate the instability
with a metallization of the system. Optical experiments in slightly doped
cuprates and doped nickelates are analyzed within this theory.
We discuss why doped cuprates matallize whereas nickelates do not.Comment: 5 pages,1 figur
- …
