4,371 research outputs found

    Beats of the Magnetocapacitance Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present calculations on the magnetocapacitance of the two-dimensional electron gas in a lateral semiconductor superlattice under two-dimensional weak periodic potential modulation in the presence of a perpendicular magnetic field. Adopting a Gaussian broadening of magnetic-field-dependent width in the density of states, we present explicit and simple expressions for the magnetocapacitance, valid for the relevant weak magnetic fields and modulation strengths. As the modulation strength in both directions increase, beats of the magnetocapacitance oscillations are observed, in the low magnetic field range (Weiss-oscillations regime), which are absent in the one-dimensional weak modulation case.Comment: 11 pages, 7 figures, accepted by Mod. Phys. Lett. B (March 2007

    Thermal properties of fluorinated graphene

    Get PDF
    Large scale atomistic simulations using the reactive force field approach (ReaxFF) are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A new set of parameters for the reactive force field potential (ReaxFF) optimized to reproduce key quantum mechanical properties of relevant carbon-fluor cluster systems are presented. Molecular dynamics (MD) simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene (GE), graphane (GA) and a sheet of BN. The mean square value of the height fluctuations and the height-height correlation function H(q)H(q) for different system sizes and temperatures show that FG is an un-rippled system in contrast to the thermal rippling behavior of graphene (GE). The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along arm-chair and zig-zag direction, respectively.Comment: To appear in Phys. Rev.

    A perturbative approach to Dirac observables and their space-time algebra

    Full text link
    We introduce a general approximation scheme in order to calculate gauge invariant observables in the canonical formulation of general relativity. Using this scheme we will show how the observables and the dynamics of field theories on a fixed background or equivalently the observables of the linearized theory can be understood as an approximation to the observables in full general relativity. Gauge invariant corrections can be calculated up to an arbitrary high order and we will explicitly calculate the first non--trivial correction. Furthermore we will make a first investigation into the Poisson algebra between observables corresponding to fields at different space--time points and consider the locality properties of the observables.Comment: 23 page

    Instability due to long range Coulomb interaction in a liquid of polarizable particles (polarons, etc.)

    Full text link
    The interaction Hamiltonian for a system of polarons a la Feynman in the presence of long range Coulomb interaction is derived and the dielectric function is computed in mean field. For large enough concentration a liquid of such particles becomes unstable. The onset of the instability is signaled by the softening of a collective optical mode in which all electrons oscillate in phase in their respective self-trapping potential. We associate the instability with a metallization of the system. Optical experiments in slightly doped cuprates and doped nickelates are analyzed within this theory. We discuss why doped cuprates matallize whereas nickelates do not.Comment: 5 pages,1 figur

    Polaron effects in electron channels on a helium film

    Full text link
    Using the Feynman path-integral formalism we study the polaron effects in quantum wires above a liquid helium film. The electron interacts with two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one dimension (1D) by an harmonic potential. The obtained results are valid for arbitrary temperature (TT), electron-phonon coupling strength (α\alpha ), and lateral confinement (ω0\omega_{0}). Analytical and numerical results are obtained for limiting cases of TT, α\alpha , and ω0\omega_{0}. We found the surprising result that reducing the electron motion from 2D to quasi-1D makes the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Reply to the comment by D. Kreimer and E. Mielke

    Get PDF
    We respond to the comment by Kreimer et. al. about the torsional contribution to the chiral anomaly in curved spacetimes. We discuss their claims and refute its main conclusion.Comment: 9 pages, revte

    Side-channel based intrusion detection for industrial control systems

    Full text link
    Industrial Control Systems are under increased scrutiny. Their security is historically sub-par, and although measures are being taken by the manufacturers to remedy this, the large installed base of legacy systems cannot easily be updated with state-of-the-art security measures. We propose a system that uses electromagnetic side-channel measurements to detect behavioural changes of the software running on industrial control systems. To demonstrate the feasibility of this method, we show it is possible to profile and distinguish between even small changes in programs on Siemens S7-317 PLCs, using methods from cryptographic side-channel analysis.Comment: 12 pages, 7 figures. For associated code, see https://polvanaubel.com/research/em-ics/code

    Off center D−D^- centers in a quantum well in the presence of a perpendicular magnetic field: angular momentum transition and magnetic evaporation

    Full text link
    We investigate the effect of the position of the donor in the quantum well on the energy spectrum and the oscillator strength of the D- system in the presence of a perpendicular magnetic field. As a function of the magnetic field we find that when the D- centers are placed sufficiently off-center they undergo singlet-triplet transitions which are similar to those found in many-electron parabolic quantum dots. The main difference is that the number of such transitions depends on the position of the donor and only a finite number of such singlet-triplet transitions are found as function of the strength of the magnetic field. For sufficiently large magnetic fields the two electron system becomes unbound. For the near center D- system no singlet-triplet and no unbinding of the D- is found with increasing magnetic field. A magnetic field vs. donor position phase diagram is presented that depends on the width of the quantum well.Comment: 16 pages, 17 figures. Accepted for publication in Phys. Rev.

    Spitzer detections of new dust components in the outflow of the Red Rectangle

    Full text link
    We present Spitzer high spectral resolution IRS spectroscopy of three positions in the carbon-rich outflow of post-AGB star HD 44179, better known as the Red Rectangle. Surprisingly, the spectra show some strong unknown mid-infrared resonances, in the 13-20 micron range. The shape and position of these resonances varies with position in the nebula, and are not correlated with the PAH features. We conclude these features are due to oxygen-rich minerals, located in a region which is believed to be predominantly carbon-rich. We provide possible explanations for the presence of oxygen-rich dust in the carbon-rich outflows. Simple Mg-Fe-oxides are suggested as carriers of these unidentified features.Comment: accepted by ApJL; 5 pages; 4 figure
    • 

    corecore