5,827 research outputs found

    Living healthier for longer: comparative effects of three heart-healthy behaviors on life expectancy with and without cardiovascular disease

    Get PDF
    Background: Non-smoking, having a normal weight and increased levels of physical activity are perhaps the three key factors for preventing cardiovascular disease (CVD). However, the relative effects of these factors on healthy longevity have not been well described. We aimed to calculate and compare the effects of non-smoking, normal weight and physical activity in middle-aged populations on life expectancy with and without cardiovascular disease. Methods: Using multi-state life tables and data from the Framingham Heart Study (n = 4634) we calculated the effects of three heart healthy behaviours among populations aged 50 years and over on life expectancy with and without cardiovascular disease. For the life table calculations, we used hazard ratios for 3 transitions (No CVD to CVD, no CVD to death, and CVD to death) by health behaviour category, and adjusted for age, sex, and potential confounders. Results: High levels of physical activity, never smoking (men), and normal weight were each associated with 20-40% lower risks of developing CVD as compared to low physical activity, current smoking and obesity, respectively. Never smoking and high levels of physical activity reduced the risks of dying in those with and without a history of CVD, but normal weight did not. Never-smoking was associated with the largest gains in total life expectancy (4.3 years, men, 4.1 years, women) and CVD-free life expectancy (3.8 and 3.4 years, respectively). High levels of physical activity and normal weight were associated with lesser gains in total life expectancy (3.5 years, men and 3.4 years, women, and 1.3 years, men and 1.0 year women, respectively), and slightly lesser gains in CVD-free life expectancy (3.0 years, men and 3.1 years, women, and 3.1 years men and 2.9 years women, respectively). Normal weight was the only behaviour associated with a reduction in the number of years lived with CVD (1.8 years, men and 1.9 years, women). Conclusions: Achieving high levels of physical activity, normal weight, and never smoking, are effective ways to prevent cardiovascular disease and to extend total life expectancy and the number of years lived free of CVD. Increasing the prevalence of normal weight could further reduce the time spent with CVD in the population

    Phonon Softening and Direct to Indirect Bandgap Crossover in Strained Single Layer MoSe2

    Full text link
    Motivated by recent experimental observations of Tongay et al. [Tongay et al., Nano Letters, 12(11), 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E" Raman peaks (E1g and E2g in bulk) exhibit significant red shifts (up to 30 cm-1), (2) the position of the A1' peak remains at 180 cm-1 (A1g in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear and (4) the electronic band structure undergoes a direct to indirect bandgap crossover under 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational and optical properties of single layer MoSe2 and similar MX2 dichalcogenides.Comment: http://link.aps.org/doi/10.1103/PhysRevB.87.12541

    Classical double-layer atoms: artificial molecules

    Full text link
    The groundstate configuration and the eigenmodes of two parallel two-dimensional classical atoms are obtained as function of the inter-atomic distance (d). The classical particles are confined by identical harmonic wells and repel each other through a Coulomb potential. As function of d we find several structural transitions which are of first or second order. For first (second) order transitions the first (second) derivative of the energy with respect to d is discontinuous, the radial position of the particles changes discontinuously (continuously) and the frequency of the eigenmodes exhibit a jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let

    Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene

    Full text link
    The properties of Dirac electrons in a magnetic superlattice (SL) on graphene consisting of very high and thin (delta-function) barriers are investigated. We obtain the energy spectrum analytically and study the transmission through a finite number of barriers. The results are contrasted with those for electrons described by the Schrodinger equation. In addition, a collimation of an incident beam of electrons is obtained along the direction perpendicular to that of the SL. We also highlight the analogy with optical media in which the refractive index varies in space.Comment: 21 pages, 13 figures, to appear in New Journal of Physic

    Polaron effects in electron channels on a helium film

    Full text link
    Using the Feynman path-integral formalism we study the polaron effects in quantum wires above a liquid helium film. The electron interacts with two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one dimension (1D) by an harmonic potential. The obtained results are valid for arbitrary temperature (TT), electron-phonon coupling strength (α\alpha ), and lateral confinement (ω0\omega_{0}). Analytical and numerical results are obtained for limiting cases of TT, α\alpha , and ω0\omega_{0}. We found the surprising result that reducing the electron motion from 2D to quasi-1D makes the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices

    Full text link
    Transport properties of the two-dimensional electron gas (2DEG) are considered in the presence of a perpendicular magnetic field BB and of a {\it weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The symmetry of the latter is rectangular or hexagonal. The well-known solution of the corresponding tight-binding equation shows that each Landau level splits into several subbands when a rational number of flux quanta h/eh/e pierces the unit cell and that the corresponding gaps are exponentially small. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies considerably the evaluation of the magnetoresistivity tensor ρμν\rho_{\mu\nu}. The relative phase of the oscillations in ρxx\rho_{xx} and ρyy\rho_{yy} depends on the modulation periods involved. For a 2D modulation with a {\bf short} period 100\leq 100 nm, in addition to the Weiss oscillations the collisional contribution to the conductivity and consequently the tensor ρμν\rho_{\mu\nu} show {\it prominent peaks when one flux quantum h/eh/e passes through an integral number of unit cells} in good agreement with recent experiments. For periods 300400300- 400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved

    On the Non-invasive Measurement of the Intrinsic Quantum Hall Effect

    Full text link
    With a model calculation, we demonstrate that a non-invasive measurement of intrinsic quantum Hall effect defined by the local chemical potential in a ballistic quantum wire can be achieved with the aid of a pair of voltage leads which are separated by potential barriers from the wire. B\"uttiker's formula is used to determine the chemical potential being measured and is shown to reduce exactly to the local chemical potential in the limit of strong potential confinement in the voltage leads. Conditions for quantisation of Hall resistance and measuring local chemical potential are given.Comment: 16 pages LaTex, 2 post-script figures available on reques

    Instability due to long range Coulomb interaction in a liquid of polarizable particles (polarons, etc.)

    Full text link
    The interaction Hamiltonian for a system of polarons a la Feynman in the presence of long range Coulomb interaction is derived and the dielectric function is computed in mean field. For large enough concentration a liquid of such particles becomes unstable. The onset of the instability is signaled by the softening of a collective optical mode in which all electrons oscillate in phase in their respective self-trapping potential. We associate the instability with a metallization of the system. Optical experiments in slightly doped cuprates and doped nickelates are analyzed within this theory. We discuss why doped cuprates matallize whereas nickelates do not.Comment: 5 pages,1 figur

    Perturbation theory for the one-dimensional optical polaron

    Full text link
    The one-dimensional optical polaron is treated on the basis of the perturbation theory in the weak coupling limit. A special matrix diagrammatic technique is developed. It is shown how to evaluate all terms of the perturbation theory for the ground-state energy of a polaron to any order by means of this technique. The ground-state energy is calculated up to the eighth order of the perturbation theory. The effective mass of an electron is obtained up to the sixth order of the perturbation theory. The radius of convergence of the obtained series is estimated. The obtained results are compared with the results from the Feynman polaron theory.Comment: 9 pages, 2 figures, RevTeX, to be published in Phys. Rev. B (2001) Ap
    corecore