4,783 research outputs found
Exciton trapping in magnetic wire structures
The lateral magnetic confinement of quasi two-dimensional excitons into wire
like structures is studied. Spin effects are take into account and two
different magnetic field profiles are considered, which experimentally can be
created by the deposition of a ferromagnetic stripe on a semiconductor quantum
well with magnetization parallel or perpendicular to the grown direction of the
well. We find that it is possible to confine excitons into one-dimensional (1D)
traps. We show that the dependence of the confinement energy on the exciton
wave vector, which is related to its free direction of motion along the wire
direction, is very small. Through the application of a background magnetic
field it is possible to move the position of the trapping region towards the
edge of the ferromagnetic stripe or even underneath the stripe. The exact
position of this 1D exciton channel depends on the strength of the background
magnetic field and on the magnetic polarisation direction of the ferromagnetic
film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte
Effect of turbulence on electron cyclotron current drive and heating in ITER
Non-linear local electromagnetic gyrokinetic turbulence simulations of the
ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The
turbulent transport is examined in regions of velocity space characteristic of
electrons heated by electron cyclotron waves. Electromagnetic fluctuations and
sub-dominant micro-tearing modes are found to contribute significantly to the
transport of the accelerated electrons, even though they have only a small
impact on the transport of the bulk species. The particle diffusivity for
resonant passing electrons is found to be less than 0.15 m^2/s, and their heat
conductivity is found to be less than 2 m^2/s. Implications for the broadening
of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio
Snake orbits and related magnetic edge states
We study the electron motion near magnetic field steps at which the strength
and/or sign of the magnetic field changes. The energy spectrum for such systems
is found and the electron states (bound and scattered) are compared with their
corresponding classical paths. Several classical properties as the velocity
parallel to the edge, the oscillation frequency perpendicular to the edge and
the extent of the states are compared with their quantum mechanical
counterpart. A class of magnetic edge states is found which do not have a
classical counterpart.Comment: 8 pages, 10 figure
Precession-torque-driven domain-wall motion in out-of-plane materials
Domain-wall (DW) motion in magnetic nanostrips is intensively studied, in
particular because of the possible applications in data storage. In this work,
we will investigate a novel method of DW motion using magnetic field pulses,
with the precession torque as the driving mechanism. We use a one dimensional
(1D) model to show that it is possible to drive DWs in out-of-plane materials
using the precession torque, and we identify the key parameters that influence
this motion. Because the DW moves back to its initial position at the end of
the field pulse, thereby severely complicating direct detection of the DW
motion, depinning experiments are used to indirectly observe the effect of the
precession torque. The 1D model is extended to include an energy landscape in
order to predict the influence of the precession torque in the depinning
experiments. Although preliminary experiments did not yet show an effect of the
precession torque, our calculations indicate that depinning experiments can be
used to demonstrate this novel method of DW motion in out-of-plane materials,
which even allows for coherent motion of multiple domains when the
Dzyaloshinskii-Moriya interaction is taken into account
Polaron effects in electron channels on a helium film
Using the Feynman path-integral formalism we study the polaron effects in
quantum wires above a liquid helium film. The electron interacts with
two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one
dimension (1D) by an harmonic potential. The obtained results are valid for
arbitrary temperature (), electron-phonon coupling strength (), and
lateral confinement (). Analytical and numerical results are
obtained for limiting cases of , , and . We found the
surprising result that reducing the electron motion from 2D to quasi-1D makes
the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Instability due to long range Coulomb interaction in a liquid of polarizable particles (polarons, etc.)
The interaction Hamiltonian for a system of polarons a la Feynman in the
presence of long range Coulomb interaction is derived and the dielectric
function is computed in mean field. For large enough concentration a liquid of
such particles becomes unstable. The onset of the instability is signaled by
the softening of a collective optical mode in which all electrons oscillate in
phase in their respective self-trapping potential. We associate the instability
with a metallization of the system. Optical experiments in slightly doped
cuprates and doped nickelates are analyzed within this theory.
We discuss why doped cuprates matallize whereas nickelates do not.Comment: 5 pages,1 figur
The two electron artificial molecule
Exact results for the classical and quantum system of two vertically coupled
two-dimensional single electron quantum dots are obtained as a function of the
interatomic distance (d) and with perpendicular magnetic field. The classical
system exhibits a second order structural transition as a function of d which
is smeared out and shifted to lower d values in the quantum case. The
spin-singlet - spin-triplet oscillations are shifted to larger magnetic fields
with increasing d and are quenched for a sufficiently large interatomic
distance.Comment: 4 pages, 4 ps figure
Classical artificial two-dimensional atoms: the Thomson model
The ring configurations for classical two-dimensional atoms are calculated
within the Thomson model and compared with the results from `exact' numerical
simulations. The influence of the functional form of the confinement potential
and the repulsive interaction potential between the particles on the
configurations is investigated. We also give exact results on those eigenmodes
of the system whose frequency does not depend on the number of particles in the
system.Comment: 9 pages, RevTeX, 4 figure
Classical double-layer atoms: artificial molecules
The groundstate configuration and the eigenmodes of two parallel
two-dimensional classical atoms are obtained as function of the inter-atomic
distance (d). The classical particles are confined by identical harmonic wells
and repel each other through a Coulomb potential. As function of d we find
several structural transitions which are of first or second order. For first
(second) order transitions the first (second) derivative of the energy with
respect to d is discontinuous, the radial position of the particles changes
discontinuously (continuously) and the frequency of the eigenmodes exhibit a
jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
Modeling of chemical processes in the low pressure capacitive RF discharges in a mixture of Ar/C2H2
We study the properties of a capacitive 13.56 MHz discharge properties with a
mixture of Ar/C2H2 taking into account the plasmochemistry and growth of heavy
hydrocarbons. A hybrid model was developed to combine the kinetic description
for electron motion and the fluid approach for negative and positive ions
transport and plasmochemical processes. A significant change of plasma
parameters related to injection of 5.8% portion of acetylene in argon was
observed and analyzed. We found that the electronegativity of the mixture is
about 30%. The densities of negatively and positively charged heavy
hydrocarbons are sufficiently large to be precursors for the formation of
nanoparticles in the discharge volume.Comment: 11 pages, 14 figure
- …