8 research outputs found

    Donor-Derived Cell-Free DNA for the Detection of Heart Allograft Injury:The Impact of the Timing of the Liquid Biopsy

    Get PDF
    Background: In heart transplant recipients, donor-derived cell-free DNA (ddcfDNA) is a potential biomarker for acute rejection (AR), in that increased values may indicate rejection. For the assessment of ddcfDNA as new biomarker for rejection, blood plasma sampling around the endomyocardial biopsy (EMB) seems a practical approach. To evaluate the effect of the EMB procedure on ddcfDNA values, ddcfDNA values before the EMB were pairwise compared to ddcfDNA values after the EMB. We aimed at evaluating whether it matters whether the ddcfDNA sampling is done before or after the EMB-procedure. Methods: Plasma samples from heart transplant recipients were obtained pre-EMB and post-EMB. A droplet digital PCR method was used for measuring ddcfDNA, making use of single-nucleotide polymorphisms that allowed both relative quantification, as well as absolute quantification of ddcfDNA. Results: Pairwise comparison of ddcfDNA values pre-EMB with post-EMB samples (n = 113) showed significantly increased ddcfDNA concentrations and ddcfDNA% in post-EMB samples: an average 1.28-fold increase in ddcfDNA concentrations and a 1.31-fold increase in ddcfDNA% was observed (p = 0.007 and p = 0.03, respectively). Conclusion: The EMB procedure causes iatrogenic injury to the allograft that results in an increase in ddcfDNA% and ddcfDNA concentrations. For the assessment of ddcfDNA as marker for AR, collection of plasma samples before the EMB procedure is therefore essential

    Inhibition of T Helper Cell Differentiation by Tacrolimus or Sirolimus Results in Reduced B-Cell Activation: Effects on T Follicular Helper Cells

    Get PDF
    The effect of immunosuppressive drugs on the generation of T follicular helper (Tfh) cells, specialized in supporting B-cell differentiation, is largely unknown. We examined whether the calcineurin inhibitor tacrolimus (TAC) and the mammalian target of rapamycin (mtor) inhibitor sirolimus (SRL) inhibit Tfh cell differentiation, and affect subsequent B-cell functions. Isolated naive T cells were polarized into Tfh-like cells in the presence of TAC or SRL. To demonstrate their functionality, we co-cultured these cells with isolated B cells in the presence of alloantigen and studied the activation and differentiation of these B cells. Tfh-like cells were defined as CD4+CXCR5+ T cells, expressing immunoinhibitory programmed death protein 1 (pd1) and inducible T-cell costimulator (icos). We found that TAC and SRL significantly inhibited Tfh-like cell differentiation. Therapeutic concentrations of TAC and SRL reduced the percentage of pd1+ and icos+ Tfh cells compared to controls. In addition, T cells grown in the presence of TAC or SRL expressed less IL-21 and provided less B-cell help. TAC and SRL both inhibited Tfh-dependent alloantigen-activated B-cell proliferation and differentiation into plasma cells and transitional B cells. In conclusion, TAC and SRL inhibited the differentiation of naive T cells into functional Tfh-like cells, a finding that can be extrapolated to immunosuppressive regimens in transplant patients

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Genetic variants of FOXP3 influence graft survival in kidney transplant patients

    No full text
    FOXP3+ regulatory T cells (Treg) play a role in controlling alloreactivity. It has been shown that short (GT)n dinucleotide repeats ((GT)15; S) in the promoter region of the FOXP3 gene enhance the promoter activity when compared to long (GT)n repeats ((GT)16; L). The present study retrospectively investigated the influence of this (GT)n FOXP3 gene polymorphism on renal allograft survival. A total of 599 consecutive first-time kidney transplant patients (median follow-up time 7.7years) were subdivided according to their FOXP3 genotype into the S-genotype group (SG) and the L-genotype group (LG). The SG was superior to the LG in both general graft survival censored for death (logrank test, p=0.013) and graft survival following acute rejection (p=0.021). Multivariate analysis defined the (GT)n FOXP3 dinucleotide repeat polymorphism as an independent factor and confirmed an advantage for the SG in renal allograft survival (HR=0.67, 95% CI 0.48-0.94, p=0.02). This gene association study identified a beneficial effect of FOXP3 genetic variants on graft survival in kidney transplant patients

    The functional polymorphism Ala258Ser in the innate receptor gene ficolin-2 in the donor predicts improved renal transplant outcome

    No full text
    BACKGROUND: Innate immunity plays a role in controlling adaptive immune responses.METHODS: We investigated the clinical relevance of single nucleotide polymorphisms in 22 genes encoding innate, secreted, and signaling pattern recognition receptors in a total of 520 donor-recipient pairs of postmortem, human leukocyte antigen-DR-compatible kidney transplantations. Associations with rejection incidence were tested in an a priori randomized training set and validation set. RESULTS: Polymorphisms in TLR-3 (rs3775296) in the recipients and in Ficolin-2 (rs7851696; Ala258Ser) and C1qR1 (rs7492) in the donors showed the strongest association with severe rejection. In multivariate analysis, presence of the Ficolin-2 Ala258Ser variant in the donor predicted lower incidence of severe rejection (odds ratio=0.3; 95% confidence interval, 0.1-0.9; P=0.024) and of graft loss (hazard ratio=0.5; 95% confidence interval, 0.2-1.0; P=0.046) independently of clinical risk factors. Ficolin-2 messenger RNA expression was detected in pretransplantation biopsies from 69 donor grafts. Serum and tissue Ficolin-2 levels were unaffected by genotype. Ficolin-2 protein, which bound to dying cells, was detected in donor kidneys in a passenger leukocyte-like pattern. Indeed, monocytes, monocyte-derived macrophages, and peripheral blood mononuclear cells expressed Ficolin-2. Donor grafts with the Ficolin-2 Ala258Ser variant contained significantly elevated expression of interleukin 6, having ascribed cytoprotective effects. It has been described that Ala258Ser leads to increased binding capacity of Ficolin-2 to N-acetylglucosamine. CONCLUSIONS:Presence of the Ficolin-2 Ala258Ser polymorphism in the donor independently predicts improved graft outcome. Based on mechanistic data, we propose that this functional polymorphism leads to more efficient handling of injured cells by phagocytozing cells, resulting in decreased intragraft exposure to danger signals and dampened alloimmune responses.</p
    corecore