250 research outputs found

    Helicobacter pylori infection and gastroduodenal diseases in Vietnam: a cross-sectional, hospital-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of <it>H. pylori </it>infection in Vietnam is reportedly high, but the spectrum of <it>H. pylori</it>-associated gastroduodenal diseases has not been systematically investigated. Moreover, despite the similarities of ethnicity and diet, the age-standardized incidence rate of gastric cancer in the northern city of Hanoi is higher than that in the southern city of Ho Chi Minh, but the reason for this phenomenon is unknown. The virulence of Vietnamese <it>H. pylori </it>has also not been investigated in detail.</p> <p>Methods</p> <p>Individuals undergoing esophagogastroduodenoscopy were randomly recruited. <it>H. pylori </it>infection status was determined based on the combined results of culture, histology, immunohistochemistry, rapid urine test and serum ELISA. Peptic ulcer (PU) and gastroesophageal reflux disease was diagnosed by endoscopy, and chronic gastritis was determined histologically. <it>H. pylori </it>virulence factors were investigated by PCR and sequencing.</p> <p>Results</p> <p>Among the examined patients, 65.6% were infected with <it>H. pylori</it>. The prevalence of infection was significantly higher in those over 40 years of age than in those aged ≀40. Chronic gastritis was present in all <it>H. pylori</it>-infected individuals, 83.1% of whom had active gastritis, and 85.3% and 14.7% had atrophy and intestinal metaplasia, respectively. PU was present in 21% of infected patients, whereas its incidence was very low in non-infected individuals. The prevalence of PU was significantly higher in Hanoi than in Ho Chi Minh. The prevalence of <it>vacA m1</it>, which has been identified as an independent risk factor for PU in Vietnam, was significantly higher among <it>H. pylori </it>isolates from Hanoi than among those from Ho Chi Minh.</p> <p>Conclusions</p> <p><it>H. pylori </it>infection is common in Vietnam and is strongly associated with PU, active gastritis, atrophy and intestinal metaplasia. <it>vacA m1 </it>is associated with an increased risk for PU and might contribute to the difference in the prevalence of PU and gastric cancer between Hanoi and Ho Chi Minh.</p

    Regulation of RKIP Function by Helicobacter pylori in Gastric Cancer

    Get PDF
    Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that infects more than half of the world’s population and is a major cause of gastric adenocarcinoma. The mechanisms that link H. pylori infection to gastric carcinogenesis are not well understood. In the present study, we report that the Raf-kinase inhibitor protein (RKIP) has a role in the induction of apoptosis by H. pylori in gastric epithelial cells. Western blot and luciferase transcription reporter assays demonstrate that the pathogenicity island of H. pylori rapidly phosphorylates RKIP, which then localizes to the nucleus where it activates its own transcription and induces apoptosis. Forced overexpression of RKIP enhances apoptosis in H. pylori-infected cells, whereas RKIP RNA inhibition suppresses the induction of apoptosis by H. pylori infection. While inducing the phosphorylation of RKIP, H. pylori simultaneously targets non-phosphorylated RKIP for proteasome-mediated degradation. The increase in RKIP transcription and phosphorylation is abrogated by mutating RKIP serine 153 to valine, demonstrating that regulation of RKIP activity by H. pylori is dependent upon RKIP’s S153 residue. In addition, H. pylori infection increases the expression of Snail, a transcriptional repressor of RKIP. Our results suggest that H. pylori utilizes a tumor suppressor protein, RKIP, to promote apoptosis in gastric cancer cells

    Variations in Helicobacter pylori Cytotoxin-Associated Genes and Their Influence in Progression to Gastric Cancer: Implications for Prevention

    Get PDF
    Helicobacter pylori (HP) is a bacterium that colonizes the human stomach and can establish a long-term infection of the gastric mucosa. Persistent Hp infection often induces gastritis and is associated with the development of peptic ulcer disease, atrophic gastritis, and gastric adenocarcinoma. Virulent HP isolates harbor the cag (cytotoxin-associated genes) pathogenicity island (cagPAI), a 40 kb stretch of DNA that encodes components of a type IV secretion system (T4SS). This T4SS forms a pilus for the injection of virulence factors into host target cells, such as the CagA oncoprotein. We analyzed the genetic variability in cagA and other selected genes of the HP cagPAI (cagC, cagE, cagL, cagT, cagV and cag Gamma) using DNA extracted from frozen gastric biopsies or from clinical isolates. Study subjects were 95 cagA+ patients that were histologically diagnosed with chronic gastritis or gastric cancer in Venezuela and Mexico, areas with high prevalence of Hp infection. Sequencing reactions were carried out by both Sanger and next-generation pyrosequencing (454 Roche) methods. We found a total of 381 variants with unambiguous calls observed in at least 10% of the originally tested samples and reference strains. We compared the frequencies of these genetic variants between gastric cancer and chronic gastritis cases. Twenty-six SNPs (11 non-synonymous and 14 synonymous) showed statistically significant differences (P<0.05), and two SNPs, in position 1039 and 1041 of cagE, showed a highly significant association with cancer (p-valueβ€Š=β€Š2.07Γ—10βˆ’6), and the variant codon was located in the VirB3 homology domain of Agrobacterium. The results of this study may provide preliminary information to target antibiotic treatment to high-risk individuals, if effects of these variants are confirmed in further investigations

    H. pylori Seropositivity before Age 40 and Subsequent Risk of Stomach Cancer: A Glimpse of the True Relationship?

    Get PDF
    Stomach carcinogenesis involves mucosal and luminal changes that favor spontaneous disappearance of Helicobacter pylori. Therefore, the association between the infection and cancer risk might typically be underestimated. As acquisition of the infection almost invariably occurs before adulthood, the serostatus at age 16–40 should best reflect the lifetime occurrence of the infection. We therefore conducted a case-control study nested within a historic cohort of about 400,000 individuals who donated sera before age 40 to either of two large Swedish Biobanks between 1968 and 2006, and whose records were linked to complete nationwide registers. For each stomach adenocarcinoma case occurring at least 5 years after serum donation 2 controls were selected matched on age, sex and year of donation and biobank. Serum immunoglobulin G antibodies against H. pylori cell-surface antigens (Hp-CSAs) were measured with an enzyme–linked immunosorbent assay and antibodies against CagA with an immunoblot assay. Conditional logistic regression models were used to estimate odds ratios (ORs) for stomach adenocarcinoma among H. pylori infected relative to uninfected. We confirmed 59 incident cases of stomach adenocarcinoma (41 non-cardia tumors) during follow-up. ORs for non-cardia stomach adenocarcinoma among subjects with Hp-CSA antibodies (regardless of CagA serostatus), antibodies against CagA (regardless of Hp-CSA serostatus), and antibodies to both, relative to those who were seronegative to both, were 17.1 (95% confidence interval [CI] 4.0–72.9), 10.9 (95% CI 3.2–36.9), and 48.5 (95% CI 5.8–407.4), respectively. H. pylori infection is a much stronger risk factor for non-cardia stomach adenocarcinoma than initially realized. However, further studies are needed to answer whether it is a necessary cause, as the possibility of misclassification of H. pylori status could not be ruled out in our study

    Helicobacter pylori Infection of Gastrointestinal Epithelial Cells in vitro Induces Mesenchymal Stem Cell Migration through an NF-ΞΊB-Dependent Pathway

    Get PDF
    The role of bone marrow-derived mesenchymal stem cells (MSC) in the physiology of the gastrointestinal tract epithelium is currently not well established. These cells can be recruited in response to inflammation due to epithelial damage, home, and participate in tissue repair. In addition, in the case of tissue repair failure, these cells could transform and be at the origin of carcinomas. However, the chemoattractant molecules responsible for MSC recruitment and migration in response to epithelial damage, and particularly to Helicobacter pylori infection, remain unknown although the role of some chemokines has been suggested. This work aimed to get insight into the mechanisms of mouse MSC migration during in vitro infection of mouse gastrointestinal epithelial cells by H. pylori. Using a cell culture insert system, we showed that infection of gastrointestinal epithelial cells by different H. pylori strains is able to stimulate the migration of MSC. This mechanism involves the secretion by infected epithelial cells of multiple cytokines, with a major role of TNFΞ±, mainly via a Nuclear Factor-kappa B-dependent pathway. This study provides the first evidence of the role of H. pylori infection in MSC migration and paves the way to a better understanding of the role of bone marrow-derived stem cells in gastric pathophysiology and carcinogenesis

    Association between Helicobacter pylori genotypes and severity of chronic gastritis, peptic ulcer disease and gastric mucosal interleukin-8 levels: evidence from a study in the Middle East

    Get PDF
    Background: The varied clinical presentations of Helicobacter pylori (H. pylori) infection are most likely due to differences in the virulence of individual strains, which determines its ability to induce production of interleukin-8 (IL-8) in the gastric mucosa. The aim of this study was to examine association between cagA, vacA-s1 and vacA-s2 genotypes of H. pylori and severity of chronic gastritis and presence of peptic ulcer disease (PUD), and to correlate these with IL-8 levels in the gastric mucosa. Methods: Gastric mucosal biopsies were obtained from patients during esophagogastroduodenoscopy. The severity of chronic gastritis was documented using the updated Sydney system. H. pylori cagA and vacA genotypes were detected by PCR. The IL-8 levels in the gastric mucosa were measured by ELISA. Results: H. pylori cagA and/or vacA genotypes were detected in 99 patients (mean age 38.4Β±12.9; 72 males), of whom 52.5% were positive for cagA, 44.4% for vacA-s1 and 39.4% for vacA-s2; and 70.7% patients had PUD. The severity of inflammation in gastric mucosa was increased with vacA-s1 (p=0.017) and decreased with vacA-s2 (p=0.025), while cagA had no association. The degree of neutrophil activity was not associated with either cagA or vacA-s1, while vacA-s2 was significantly associated with decreased neutrophil activity (p=0.027). PUD was significantly increased in patients with cagA (p=0.002) and vacA-s1 (p=0.031), and decreased in those with vacA-s2 (p=0.011). The level of IL-8 was significantly increased in patients with cagA (p=0.011) and vacA-s1 (p=0.024), and lower with vacA-s2 (p=0.004). Higher levels of IL-8 were also found in patients with a more severe chronic inflammation (p=0.001), neutrophil activity (p=0.007) and those with PUD (p=0.001). Conclusions: Presence of vacA-s1 genotype of H. pylori is associated with more severe chronic inflammation and higher levels of IL-8 in the gastric mucosa, as well as higher frequency of PUD. Patients with vacA-s2 have less severe gastritis, lower levels of IL-8, and lower rates of PUD. The presence of cagA genotype is not associated with the severity of gastritis or IL-8 induction in the gastric mucosa. The association of cagA with PUD may be a reflection of its presence with vacA-s1 genotype

    Helicobacter pylori Counteracts the Apoptotic Action of Its VacA Toxin by Injecting the CagA Protein into Gastric Epithelial Cells

    Get PDF
    Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host
    • …
    corecore