99 research outputs found

    RRx-001, A novel dinitroazetidine radiosensitizer.

    Get PDF
    The 'holy grail' in radiation oncology is to improve the outcome of radiation therapy (RT) with a radiosensitizer-a systemic chemical/biochemical agent that additively or synergistically sensitizes tumor cells to radiation in the absence of significant toxicity. Similar to the oxygen effect, in which DNA bases modified by reactive oxygen species prevent repair of the cellular radiation damage, these compounds in general magnify free radical formation, leading to the permanent "fixation" of the resultant chemical change in the DNA structure. The purpose of this review is to present the origin story of the radiosensitizer, RRx-001, which emerged from the aerospace industry. The activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews

    Animal models and their role in imaging-assisted co-clinical trials

    Get PDF
    The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients\u27 tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials

    A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity

    Get PDF
    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue–ECM boundary, rather than by differential homo- and heterotypic energies of cell–cell interaction. Surprisingly, interactions with the tissue–ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell–cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell–cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell–ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer

    Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoamine oxidase A (MAO-A), a mitochondrial enzyme that degrades monoamines including neurotransmitters, is highly expressed in basal cells of the normal human prostatic epithelium and in poorly differentiated (Gleason grades 4 and 5), aggressive prostate cancer (PCa). Clorgyline, an MAO-A inhibitor, induces secretory differentiation of normal prostate cells. We examined the effects of clorgyline on the transcriptional program of epithelial cells cultured from high grade PCa (E-CA).</p> <p>Methods</p> <p>We systematically assessed gene expression changes induced by clorgyline in E-CA cells using high-density oligonucleotide microarrays. Genes differentially expressed in treated and control cells were identified by Significance Analysis of Microarrays. Expression of genes of interest was validated by quantitative real-time polymerase chain reaction.</p> <p>Results</p> <p>The expression of 156 genes was significantly increased by clorgyline at all time points over the time course of 6 – 96 hr identified by Significance Analysis of Microarrays (SAM). The list is enriched with genes repressed in 7 of 12 oncogenic pathway signatures compiled from the literature. In addition, genes downregulated ≥ 2-fold by clorgyline were significantly enriched with those upregulated by key oncogenes including beta-catenin and ERBB2, indicating an anti-oncogenic effect of clorgyline. Another striking effect of clorgyline was the induction of androgen receptor (AR) and classic AR target genes such as prostate-specific antigen together with other secretory epithelial cell-specific genes, suggesting that clorgyline promotes differentiation of cancer cells. Moreover, clorgyline downregulated EZH2, a critical component of the Polycomb Group (PcG) complex that represses the expression of differentiation-related genes. Indeed, many genes in the PcG repression signature that predicts PCa outcome were upregulated by clorgyline, suggesting that the differentiation-promoting effect of clorgyline may be mediated by its downregulation of EZH2.</p> <p>Conclusion</p> <p>Our results suggest that inhibitors of MAO-A, already in clinical use to treat depression, may have potential application as therapeutic PCa drugs by inhibiting oncogenic pathway activity and promoting differentiation.</p

    Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer

    Get PDF
    AbstractBackgroundTechnology development to enable the culture of human prostate cancer (PCa) progenitor cells is required for the identification of new, potentially curative therapies for PCa.ObjectiveWe established and characterized patient-derived conditionally reprogrammed cells (CRCs) to assess their biological properties and to apply these to test the efficacies of drugs.Design, setting, and participantsCRCs were established from seven patient samples with disease ranging from primary PCa to advanced castration-resistant PCa (CRPC). The CRCs were characterized by genomic, transcriptomic, protein expression, and drug profiling.Outcome measurements and statistical analysisThe phenotypic quantification of the CRCs was done based on immunostaining followed by image analysis with Advanced Cell Classifier using Random Forest supervised machine learning. Copy number aberrations (CNAs) were called from whole-exome sequencing and transcriptomics using in-house pipelines. Dose-response measurements were used to generate multiparameter drug sensitivity scores using R-statistical language.Results and limitationsWe generated six benign CRC cultures which all had an androgen receptor-negative, basal/transit-amplifying phenotype with few CNAs. In three-dimensional cell culture, these cells could re-express the androgen receptor. The CRCs from a CRPC patient (HUB.5) displayed multiple CNAs, many of which were shared with the parental tumor. We carried out high-throughput drug-response studies with 306 emerging and clinical cancer drugs. Using the benign CRCs as controls, we identified the Bcl-2 family inhibitor navitoclax as the most potent cancer-specific drug for the CRCs from a CRPC patient. Other drug efficacies included taxanes, mepacrine, and retinoids.ConclusionsComprehensive cancer pharmacopeia-wide drug testing of CRCs from a CRPC patient highlighted both known and novel drug sensitivities in PCa, including navitoclax, which is currently being tested in clinical trials of CRPC.Patient summaryWe describe an approach to generate patient-derived cancer cells from advanced prostate cancer and apply such cells to discover drugs that could be applied in clinical trials for castration-resistant prostate cancer

    A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity

    Get PDF
    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue–ECM boundary, rather than by differential homo- and heterotypic energies of cell–cell interaction. Surprisingly, interactions with the tissue–ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell–cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell–cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell–ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer

    Patient-Derived Models of Cancer in the NCI PDMC Consortium: Selection, Pitfalls, and Practical Recommendations

    Get PDF
    For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics. Based on collective experience from the consortium groups, we provide insight regarding PDMCs established both in vitro and in vivo, with a focus on practical matters related to developing and maintaining key cancer models through a series of vignettes. Although every model has the potential to offer valuable insights, the choice of the right model should be guided by the research question. However, recognizing the inherent constraints in each model is crucial. Our objective here is to delineate the strengths and limitations of each model as established by individual vignettes. Further advances in PDMCs and the development of novel model systems will enable us to better understand human biology and improve the study of human pathology in the lab

    Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials

    Get PDF
    The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients\u27 tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials
    • …
    corecore