54 research outputs found

    Controlling Chaos through Compactification in Cosmological Models with a Collapsing Phase

    Full text link
    We consider the effect of compactification of extra dimensions on the onset of classical chaotic "Mixmaster" behavior during cosmic contraction. Assuming a universe that is well-approximated as a four-dimensional Friedmann-Robertson--Walker model (with negligible Kaluza-Klein excitations) when the contraction phase begins, we identify compactifications that allow a smooth contraction and delay the onset of chaos until arbitrarily close the big crunch. These compactifications are defined by the de Rham cohomology (Betti numbers) and Killing vectors of the compactification manifold. We find compactifications that control chaos in vacuum Einstein gravity, as well as in string theories with N = 1 supersymmetry and M-theory. In models where chaos is controlled in this way, the universe can remain homogeneous and flat until it enters the quantum gravity regime. At this point, the classical equations leading to chaotic behavior can no longer be trusted, and quantum effects may allow a smooth approach to the big crunch and transition into a subsequent expanding phase. Our results may be useful for constructing cosmological models with contracting phases, such as the ekpyrotic/cyclic and pre-big bang models.Comment: 1 figure. v2/v3: minor typos correcte

    Validating and optimising mismatch tolerance of Doppler backscattering measurements with the beam model

    Full text link
    We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam's electric field is not in the plane perpendicular to the magnetic field. Correcting for this effect is important for determining the amplitude of the actual density fluctuations. Previous preliminary comparisons between the model and Mega-Ampere Spherical Tokamak (MAST) plasmas were promising. In this work, we quantitatively account for this effect on DIII-D, a conventional tokamak. We compare the predicted and measured mismatch attenuation in various DIII-D, MAST, and MAST-U plasmas, showing that the beam model is applicable in a wide variety of situations. Finally, we performed a preliminary parameter sweep and found that the mismatch tolerance can be improved by optimising the probe beam's width and curvature at launch. This is potentially a design consideration for new DBS systems

    The Ages, Metallicities and Alpha Element Enhancements of Globular Clusters in the Elliptical NGC 5128: A Homogeneous Spectroscopic Study with Gemini/GMOS

    Full text link
    We present new integrated light spectroscopy of globular clusters (GCs) in NGC 5128 in order to measure radial velocities and derive ages, metallicities, and alpha-element abundance ratios. Using Gemini-S 8-m/GMOS, we obtained spectroscopy in the range of ~3400-5700 AA for 72 GCs with S/N > 30 /AA and we have also discovered 35 new GCs within NGC 5128 from our radial velocity measurements. We measured and compared the Lick indices from HdeltaA through Fe5406 with the single stellar population (SSP) models of Thomas et al.(2003,2004). We also measure Lick indices for 41 Milky Way GCs from Puzia et al. (2002) and Schiavon et al. (2005) with the same methodology for direct comparison. Our results show that 68% of the NGC 5128 GCs have old ages (> 8 Gyr), 14% have intermediate ages (5-8 Gyr), and 18% have young ages (< 5 Gyr). However, when we look at the metallicity of the GCs as a function of age, we find 92% of metal-poor GCs and 56% of metal-rich GCs in NGC 5128 have ages > 8 Gyr, indicating that the majority of both metallicity subpopulations of GCs formed early, with a significant population of young and metal-rich GCs forming later. Our metallicity distribution function generated directly from spectroscopic Lick indices is clearly bimodal, as is the color distribution of the same set of GCs. Thus the metallicity bimodality is real and not an artifact of the color to metallicity conversion. The [alpha/Fe] values are supersolar with a mean value of 0.14pm0.04, indicating a fast formation timescale. However, the GCs in NGC 5128 are not as [alpha/Fe] enhanced as the Milky Way GCs also examined in this study. Our results support a rapid, early formation of the GC system in NGC 5128, with subsequent major accretion and/or GC and star forming events in more recent times (abridged).Comment: Accepted to The Astrophysical Journal, 36 pages, 14 figures, 7 table

    Cosmology with a long range repulsive force

    Get PDF
    We consider a class of cosmological models in which the universe is filled with a (non-electric) charge density that repels itself by means of a force carried by a vector boson with a tiny mass. When the vector's mass depends upon other fields, the repulsive interaction gives rise to an electromagnetic barrier which prevents these fields from driving the mass to zero. This can modify the cosmology dramatically. We present a very simple realization of this idea in which the vector's mass arises from a scalar field. The electromagnetic barrier prevents this field from rolling down its potential and thereby leads to accelerated expansion.Comment: 15 pages, 8 figures, LaTeX (version accepted for publication in PRD). 3 new figures, extended discussion of observational consequence

    Exploring the mycobacteriophage metaproteome: Phage genomics as an educational platform

    Get PDF
    Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774) of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three - encoding tape-measure proteins, lysins, and minor tail proteins - are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15%) have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education. © 2006 Hatfull et al

    LIMITS ON ANISOTROPY AND INHOMOGENEITY FROM THE COSMIC BACKGROUND RADIATION,

    Get PDF
    We consider directly the equations by which matter imposes anisotropies on freely propagating background radiation, leading to a new way of using anisotropy measurements to limit the deviations of the Universe from a Friedmann-Robertson-Walker (FRW) geometry. This approach is complementary to the usual Sachs-Wolfe approach: the limits obtained are not as detailed, but they are more model-independent. We also give new results about combined matter-radiation perturbations in an almost-FRW universe, and a new exact solution of the linearised equations.Comment: 18 pages Latex

    Three principles for the progress of immersive technologies in healthcare training and education

    Get PDF

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore