6 research outputs found

    SPLICE Safe and Precise Landing - Integrated Capabilities Evolution

    Get PDF
    The SPLICE project is developing, maturing, demonstrating, and infusing precision landing and hazard avoidance (PL&HA) technologies for NASA and potential commercial spaceflight missions. Near-term development includes high precision and accuracy velocimetry with ranging (via the NDL), high-resolution real-time mapping and hazard detection with ranging (via the HDL), lunar terrain relative navigation (TRN), and the requisite high performance computing capability. These technologies are initially intended to provide PL&HA for the moon, but are extensible to any planetary body. Long-term, the goal is to make these capabilities available to government and commercial entities and to license technology to commercial entities for production

    Single Board Computer Radiation Test Results and Radiation Test Software

    Get PDF
    Single Board Computers (SBCs) are quickly evolving and gaining capability as their cost comes down. As their footprints, cost, and power requirements decrease, their processing power increases. This makes them very attractive for use on space missions and an enabling technology as spacecraft size decreases and computational demand increases. One of the major challenges electronics face in the space environment is radiation. In 2019, the NASA Johnson Space Center (JSC) tested a selection of SBCs to low Earth orbit (LEO) radiation levels and evaluated their susceptibility and survivability. For this test campaign, JSC developed a Python software suite to better characterize the SBCs performance and intends to share the software

    Trajectory Design Considerations for Exploration Mission 1

    Get PDF
    Exploration Mission 1 (EM-1) will be the first mission to send an uncrewed Orion Multi-Purpose Crew Vehicle (MPCV) to cislunar space in the fall of 2019. EM-1 was originally conceived as a lunar free-return mission, but was later changed to a Distant Retrograde Orbit (DRO) mission as a precursor to the Asteroid Redirect Mission. To understand the required mission performance (i.e., propellant requirement), a series of trajectory optimization runs was conducted using JSC's Copernicus spacecraft trajectory optimization tool. In order for the runs to be done in a timely manner, it was necessary to employ a parallelization approach on a computing cluster using a new trajectory scan tool written in Python. Details of the scan tool are provided and how it is used to perform the scans and post-process the results. Initially, a scan of daily due east launched EM-1 DRO missions in 2018 was made. Valid mission opportunities are ones that do not exceed the useable propellant available to perform the required burns. The initial scan data showed the propellant and delta-V performance patterns for each launch period. As questions were raised from different subsystems (e.g., power, thermal, communications, flight operations, etc.), the mission parameters or data that were of interest to them were added to the scan output data file. The additional data includes: (1) local launch and landing times in relation to sunrise and sunset, (2) length of eclipse periods during the in-space portion of the mission, (3) Earth line of sight from cislunar space, (4) Deep Space Network field of view looking towards cislunar space, and (5) variation of the downrange distance from Earth entry interface to splashdown. Mission design trades can also be performed based on the information that the additional data shows. For example, if the landing is in darkness, but the recovery operations team desires a landing in daylight, then an analysis is performed to determine how to change the mission design to meet this request. Also, subsystems request feasibility of alternate or contingency mission designs, such as adding an Orion main engine checkout burn or Orion completing all of its burns using only its auxiliary thrusters. This paper examines and presents the evolving trade studies that incorporate subsystem feedback and demonstrate the feasibility of these constrained mission trajectory designs and contingencies

    Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium

    No full text
    BACKGROUND: Reentrant ventricular arrhythmias are a major cause of sudden death in patients with structural heart disease. Current treatments focus on electrically homogenizing regions of scar contributing to ventricular arrhythmia with ablation or altering conductive properties using antiarrhythmic drugs. The high conductivity of carbon nanotubes may allow restoration of conduction in regions where impaired electrical conduction results in functional abnormalities. We propose a new concept for arrhythmia treatment using a stretchable, flexible biopatch with conductive properties to attempt to restore conduction across regions in which activation is disrupted.METHODS: Carbon nanotube patches composed of nanofibrillated cellulose/single-walled carbon nanotube ink 3-dimensionally printed in conductive patterns onto bacterial nanocellulose were developed and evaluated for conductivity, flexibility, and mechanical properties. The patches were applied on 6 canines to epicardium before and after surgical disruption. Electroanatomic mapping was performed on normal epicardium, then repeated over surgically disrupted epicardium, and then finally with the patch applied passively.RESULTS: We developed a 3-dimensional printable carbon nanotube ink complexed on bacterial nanocellulose that was (1) expressable through 3-dimensional printer nozzles, (2) electrically conductive, (3) flexible, and (4) stretchable. Six canines underwent thoracotomy, and, during epicardial ventricular pacing, mapping was performed. We demonstrated disruption of conduction after surgical incision in all 6 canines based on activation mapping. The patch resulted in restored conduction based on mapping and assessment of conduction direction and velocities in all canines.CONCLUSIONS: We have demonstrated 3-dimensional custom-printed electrically conductive carbon nanotube patches can be surgically manipulated to improve cardiac conduction when passively applied to surgically disrupted epicardial myocardium in canines

    Injectable conductive hydrogel restores conduction through ablated myocardium

    No full text
    Introduction Therapies for substrate-related arrhythmias include ablation or drugs targeted at altering conductive properties or disruption of slow zones in heterogeneous myocardium. Conductive compounds such as carbon nanotubes may provide a novel personalizable therapy for arrhythmia treatment by allowing tissue homogenization. Methods A nanocellulose carbon nanotube-conductive hydrogel was developed to have conduction properties similar to normal myocardium. Ex vivo perfused canine hearts were studied. Electroanatomic activation mapping of the epicardial surface was performed at baseline, after radiofrequency ablation, and after uniform needle injections of the conductive hydrogel through the injured tissue. Gross histology was used to assess distribution of conductive hydrogel in the tissue. Results The conductive hydrogel viscosity was optimized to decrease with increasing shear rate to allow expression through a syringe. The direct current conductivity under aqueous conduction was 4.3 x 10(-1) S/cm. In four canine hearts, when compared with the homogeneous baseline conduction, isochronal maps demonstrated sequential myocardial activation with a shift in direction of activation to surround the edges of the ablated region. After injection of the conductive hydrogel, isochrones demonstrated conduction through the ablated tissue with activation restored through the ablated tissue. Gross specimen examination demonstrated retention of the hydrogel within the tissue. Conclusions This proof-of-concept study demonstrates that conductive hydrogel can be injected into acutely disrupted myocardium to restore conduction. Future experiments should focus on evaluating long-term retention and biocompatibility of the hydrogel through in vivo experimentation

    In Vitro Tools for Quantifying Structure–Function Relationships in Cardiac Myocyte Cells and Tissues

    No full text
    corecore