2 research outputs found

    Molecular-Level Modifications Induced by Photo-Oxidation of Lipid Monolayers Interacting with Erythrosin

    No full text
    Incorporation into cell membranes is key for the action of photosensitizers in photomedicine treatments, with hydroperoxidation as the prominent pathway of lipid oxidation. In this paper, we use Langmuir monolayers of 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-<i>sn</i>-glycero-3-phosphocholine (DPPC) as cell membrane models to investigate adsorption of the photosensitizer erythrosin and its effect on photoinduced lipid oxidation. From surface pressure isotherms and polarization-modulated infrared reflection–absorption spectroscopy (PM-IRRAS) data, erythrosin was found to adsorb mainly via electrostatic interaction with the choline in the head groups of both DOPC and DPPC. It caused larger monolayer expansion in DOPC, with possible penetration into the hydrophobic unsaturated chains, while penetration into the DPPC saturated chains was insignificant. Easier penetration is due to the less packed DOPC monolayer, in comparison to the more compact DPPC according to the monolayer compressibility data. Most importantly, light irradiation at 530 nm made the erythrosin-containing DOPC monolayer become less unstable, with a relative surface area increase of ca. 19%, in agreement with previous findings for bioadhesive giant vesicles. The relative area increase is consistent with hydroperoxidation, supporting the erythrosin penetration into the lipid chains, which favors singlet oxygen generation close to double bonds, an important requirement for photodynamic efficiency

    Toward the Optimization of an e-Tongue System Using Information Visualization: A Case Study with Perylene Tetracarboxylic Derivative Films in the Sensing Units

    No full text
    The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl<sub>2</sub> (Cu<sup>2+</sup>), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir–Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 μM or higher could be distinguished with thinner filmstens of nanometers at mostwhich could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors
    corecore