10 research outputs found

    Sensibilidade de Digitaria insularis a herbicidas em áreas agrícolas no bioma Cerrado brasileiro

    Get PDF
    The objective of this work was to evaluate the sensitivity of different populations of Digitaria insularis to the glyphosate, clethodim, and haloxyfop-P-methyl herbicides, in agricultural areas, and to develop infestation maps based on the responses of these populations. One hundred sixty-one populations suspected of being resistant were evaluated and compared to a susceptible population. When plants displayed three to four tillers, the populations were sprayed with glyphosate (1,000 g ha-1 a.e.), clethodim (108 g ha-1 a.i. + 0.5% mineral oil), and haloxyfop-P-methyl (62.35 g ha-1 a.i. + 0.5% mineral oil); plants without herbicide application were used as the control. The plant populations were classified as susceptible, intermediately resistant (with susceptible and resistant plants), or resistant to the tested herbicides. All populations were susceptible to clethodim; 97.5% were susceptible and 2.5% were intermediately resistant to haloxyfop-P-methyl; and 9.9% were susceptible, 21.1% intermediately resistant, and 68.9% resistant to glyphosate. Glyphosate-resistant populations are homogeneously distributed throughout the evaluated regions. There are no cases of D. insularis multiple resistance in the sampled regions; however, cross-resistance to glyphosate and haloxyfop-P-methyl was detected.O objetivo deste trabalho foi avaliar a sensibilidade de diferentes populações de Digitaria insularis aos herbicidas glifosato, cletodim e haloxifope-P-metílico, em áreas agrícolas, e elaborar mapas de infestação com base na resposta das populações aos herbicidas. Cento e sessenta e uma populações com suspeita de serem resistentes foram avaliadas e comparadas a uma população suscetível. Quando as plantas estavam com três a quatro perfilhos, as populações foram pulverizadas com glifosato (1.000 g ha-1 e.a.), cletodim (108 g ha-1 i.a. + 0,5% de óleo mineral) e com haloxifope-P-metílico (62,35 g ha-1 i.a. + 0,5% de óleo mineral); plantas sem aplicação de herbicidas foram usadas como controle. As populações foram classificadas como sensíveis, resistentes ou intermediárias (com plantas sensíveis e resistentes) aos herbicidas-teste. Todas as populações foram sensíveis ao cletodim; 97,5% foram sensíveis e 2,5% intermediárias a haloxifope-P-metílico; e 9,9% foram sensíveis, 21,1% intermediárias e 68,9% resistentes ao glifosato. Populações resistentes ao herbicida glifosato estão dispersas homogeneamente nas regiões avaliadas. Não há casos de resistência múltipla de D. insularis nas regiões amostradas; no entanto, detectou-se resistência cruzada a glifosato e a haloxifope-P-metílico

    Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum

    No full text
    The yeasts are microorganisms with great potential for biotechnological applications in diverse areas. The biological control of phytopathogens by yeasts has showed satisfactory results under laboratory conditions, and it has already produced commercial formulations. With this as focus, this work aims to perform in vitro and in vivo evaluations of the action of a Torulaspora globosa yeast strain (1S112), isolated from sugarcane rhizosphere, against the phytopathogenic mold Colletotrichum sublineolum, the causative agent of anthracnose in sorghum. In vitro experiments included the antagonism test in Petri dishes with morphological hyphal evaluation; yeast killer activity; siderophore, volatile compound and hydrolytic enzyme production. In vivo experiments were conducted in greenhouse conditions with a sorghum variety susceptible to C. sublineolum by evaluating the anthracnose disease for 6 weeks. The results indicated that the yeast strain significantly controlled the fungal growth, either in vitro or in vivo. The strain of T. globosa exhibited killer activity against two sensitive strains, which is a novel capacity for this species. The yeast did not produce siderophores, volatile compounds or hydrolytic enzymes, although it has reduced the mycelial growth, resulting in hyphal deformities but not cell death. The yeast controlled the anthracnose disease in sorghum, either inoculated before or after the fungal spores, suggesting that the competition for space and nutrients to dominate the mold and killer toxin production, altering the hyphal morphology, are mechanisms utilized by the yeast in the biocontrol

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger.Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger
    corecore