357 research outputs found

    The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis

    Full text link
    The heats of formation of haloacetylenes are evaluated using the recent W1 and W2 ab initio computational thermochemistry methods. These calculations involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the one-particle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin-orbit coupling. The heats of formation determined using W2 theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol, \hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21 kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and destabilization energies relative to acetylene were obtained at the W1 level of theory. So doing we find the following destabilization order for acetylenes: FCCF >> ClCCF >> HCCF >> ClCCCl >> HCCCl >> HCCH. By a combination of W1 theory and isodesmic reactions, we show that the generally accepted heat of formation of 1,2-dichloroethane should be revised to -31.8±\pm0.6 kcal/mol, in excellent agreement with a very recent critically evaluated review. The performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3 theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue

    Dosimetric evaluation and radioimmunotherapy of anti-tumour multivalent Fab́ fragments

    Get PDF
    We have been investigating the use of cross-linked divalent (DFM) and trivalent (TFM) versions of the anti-carcinoembryonic antigen (CEA) monoclonal antibody A5B7 as possible alternatives to the parent forms (IgG and F(ab́)2) which have been used previously in clinical radioimmunotherapy (RIT) studies in colorectal carcinoma. Comparative biodistribution studies of similar sized DFM and F(ab́)2 and TFM and IgG, radiolabelled with both 131I and 90Y have been described previously using the human colorectal tumour LS174T nude mouse xenograft model (Casey et al (1996) Br J Cancer 74: 1397–1405). In this study quantitative estimates of radiation distribution and RIT in the xenograft model provided more insight into selecting the most suitable combination for future RIT. Radiation doses were significantly higher in all tissues when antibodies were labelled with 90Y. Major contributing organs were the kidneys, liver and spleen. The extremely high absorbed dose to the kidneys on injection of 90Y-labelled DFM and F(ab́)2 as a result of accumulation of the radiometal would result in extremely high toxicity. These combinations are clearly unsuitable for RIT. Cumulative dose of 90Y-TFM to the kidney was 3 times lower than the divalent forms but still twice as high as for 90Y-IgG. TFM clears faster from the blood than IgG, producing higher tumour to blood ratios. Therefore when considering only the tumour to blood ratios of the total absorbed dose, the data suggests that TFM would be the most suitable candidate. However, when corrected for equitoxic blood levels, doses to normal tissues for TFM were approximately twice the level of IgG, producing a two-fold increase in the overall tumour to normal tissue ratio. In addition RIT revealed that for a similar level of toxicity and half the administered activity, 90Y-IgG produced a greater therapeutic response. This suggests that the most promising A5B7 antibody form with the radionuclide 90Y may be IgG. Dosimetry analysis revealed that the tumour to normal tissue ratios were greater for all 131I-labelled antibodies. This suggests that 131I may be a more suitable radionuclide for RIT, in terms of lower toxicity to normal tissues. The highest tumour to blood dose and tumour to normal tissue ratio at equitoxic blood levels was 131I-labelled DFM, suggesting that 131I-DFM may be best combination of antibody and radionuclide for A5B7. The dosimetry estimates were in agreement with RIT results in that twice the activity of 131I-DFM must be administered to produce a similar therapeutic effect as 131I-TFM. The toxicity in this therapy experiment was minimal and further experiments at higher doses are required to observe if there would be any advantage of a higher initial dose rate for 131I-DFM. © 1999 Cancer Research Campaig

    Localized bioconvection of Euglena caused by phototaxis in the lateral direction

    Full text link
    Euglena, a swimming micro-organism, exhibited a characteristic bioconvection that was localized at the center of a sealed chamber under bright illumination to induce negative phototaxis. This localized pattern consisted of high-density spots, in which convection was found. These observations were reproduced by a mathematical model that was based on the phototaxis of individual cells in both the vertical and lateral directions. Our results indicate that this convection is maintained by upward swimming, as with general bioconvection, and the localization originates from lateral phototaxis

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Lubricating Bacteria Model for Branching growth of Bacterial Colonies

    Full text link
    Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.

    Knowledge and competency standards for specialized cognitive behavior therapy for adult obsessive-compulsive disorder

    Get PDF
    Obsessive-Compulsive Disorder (OCD) is a leading cause of disability world-wide (World Health Organization, 2008). Treatment of OCD is a specialized field whose aim is recovery from illness for as many patients as possible. The evidence-based psychotherapeutic treatment for OCD is specialized cognitive behavior therapy (CBT, NICE, 2005, Koran and Simpson, 2013). However, these treatments are not accessible to many sufferers around the world. Currently available guidelines for care are deemed to be essential but insufficient because of highly variable clinician knowledge and competencies specific to OCD. The phase two mandate of the 14 nation International OCD Accreditation Task Force (ATF) created by the Canadian Institute for Obsessive Compulsive Disorders is development of knowledge and competency standards for specialized treatments for OCD through the lifespan deemed by experts to be foundational to transformative change in this field. This paper presents knowledge and competency standards for specialized CBT for adult OCD developed to inform, advance, and offer a model for clinical practice and training for OCD. During upcoming ATF phases three and four criteria and processes for training in specialized treatments for OCD through the lifespan for certification (individuals) and accreditation (sites) will be developed based on the ATF standards

    A Coin Vibrational Motor Swimming at Low Reynolds Number

    Get PDF
    Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream ~ Re 1/2s U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 20/(ων) for motor angular frequency ω and fluid kinematic viscosity ν

    Contour models of cellular adhesion

    Full text link
    The development of traction-force microscopy, in the past two decades, has created the unprecedented opportunity of performing direct mechanical measurements on living cells as they adhere or crawl on uniform or micro-patterned substrates. Simultaneously, this has created the demand for a theoretical framework able to decipher the experimental observations, shed light on the complex biomechanical processes that govern the interaction between the cell and the extracellular matrix and offer testable predictions. Contour models of cellular adhesion, represent one of the simplest and yet most insightful approach in this problem. Rooted in the paradigm of active matter, these models allow to explicitly determine the shape of the cell edge and calculate the traction forces experienced by the substrate, starting from the internal and peripheral contractile stresses as well as the passive restoring forces and bending moments arising within the actin cortex and the plasma membrane. In this chapter I provide a general overview of contour models of cellular adhesion and review the specific cases of cells equipped with isotropic and anisotropic actin cytoskeleton as well as the role of bending elasticity.Comment: 24 pages, 9 figures. arXiv admin note: text overlap with arXiv:1304.107
    corecore