6 research outputs found

    Proximity of Substantia Nigra Microstimulation to Putative GABAergic Neurons Predicts Modulation of Human Reinforcement Learning

    Get PDF
    Neuronal firing in the substantia nigra (SN) immediately following reward is thought to play a crucial role in human reinforcement learning. As in Ramayya et al. (2014a) we applied microstimulation in the SN of patients undergoing deep brain stimulation (DBS) for the treatment of Parkinson's disease as they engaged in a two-alternative reinforcement learning task. We obtained microelectrode recordings to assess the proximity of the electrode tip to putative dopaminergic and GABAergic SN neurons and applied stimulation to assess the functional importance of these neuronal populations for learning. We found that the proximity of SN microstimulation to putative GABAergic neurons predicted the degree of stimulation-related changes in learning. These results extend previous work by supporting a specific role for SN GABA firing in reinforcement learning. Stimulation near these neurons appears to dampen the reinforcing effect of rewarding stimuli

    Closed-loop Stimulation of Temporal Cortex Rescues Functional Networks and Improves Memory

    Get PDF
    Memory failures are frustrating and often the result of ineffective encoding. One approach to improving memory outcomes is through direct modulation of brain activity with electrical stimulation. Previous efforts, however, have reported inconsistent effects when using open-loop stimulation and often target the hippocampus and medial temporal lobes. Here we use a closed-loop system to monitor and decode neural activity from direct brain recordings in humans. We apply targeted stimulation to lateral temporal cortex and report that this stimulation rescues periods of poor memory encoding. This system also improves later recall, revealing that the lateral temporal cortex is a reliable target for memory enhancement. Taken together, our results suggest that such systems may provide a therapeutic approach for treating memory dysfunction

    Theta-burst stimulation entrains frequency-specific oscillatory responses.

    Get PDF
    BACKGROUND: Brain stimulation has emerged as a powerful tool in human neuroscience, becoming integral to next-generation psychiatric and neurologic therapeutics. Theta-burst stimulation (TBS), in which electrical pulses are delivered in rhythmic bouts of 3-8 Hz, seeks to recapitulate neural activity seen endogenously during cognitive tasks. A growing literature suggests that TBS can be used to alter or enhance cognitive processes, but little is known about how these stimulation events influence underlying neural activity. OBJECTIVE: Our study sought to investigate the effect of direct electrical TBS on mesoscale neural activity in humans by asking (1) whether TBS evokes persistent theta oscillations in cortical areas, (2) whether these oscillations occur at the stimulated frequency, and (3) whether stimulation events propagate in a manner consistent with underlying functional and structural brain architecture. METHODS: We recruited 20 neurosurgical epilepsy patients with indwelling electrodes and delivered direct cortical TBS at varying locations and frequencies. Simultaneous iEEG was recorded from non-stimulated electrodes and analyzed to understand how TBS influences mesoscale neural activity. RESULTS: We found that TBS rapidly evoked theta rhythms in widespread brain regions, preferentially at the stimulation frequency, and that these oscillations persisted for hundreds of milliseconds post stimulation offset. Furthermore, the functional connectivity between recording and stimulation sites predicted the strength of theta response, suggesting that underlying brain architecture guides the flow of stimulation through the brain. CONCLUSIONS: By demonstrating that cortical TBS induces frequency-specific oscillatory responses, our results suggest this technology can be used to directly and predictably influence the activity of cognitively-relevant brain networks

    Closed-loop stimulation of temporal cortex rescues functional networks and improves memory

    Get PDF
    Memory lapses can occur due to ineffective encoding, but it is unclear if targeted brain stimulation can improve memory performance. Here, authors use a closed-loop system to decode and stimulate periods of ineffective encoding, showing that stimulation of lateral temporal cortex can enhance memory

    Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans

    No full text
    People often forget information because they fail to effectively encode it. Here, we test the hypothesis that targeted electrical stimulation can modulate neural encoding states and subsequent memory outcomes. Using recordings from neurosurgical epilepsy patients with intracranially implanted electrodes, we trained multivariate classifiers to discriminate spectral activity during learning that predicted remembering from forgetting, then decoded neural activity in later sessions in which we applied stimulation during learning. Stimulation increased encoding-state estimates and recall if delivered when the classifier indicated low encoding efficiency but had the reverse effect if stimulation was delivered when the classifier indicated high encoding efficiency. Higher encoding-state estimates from stimulation were associated with greater evidence of neural activity linked to contextual memory encoding. In identifying the conditions under which stimulation modulates memory, the data suggest strategies for therapeutically treating memory dysfunction
    corecore