
Dartmouth College
Dartmouth Digital Commons

Open Dartmouth: Faculty Open Access Articles

2-6-2018

Closed-loop Stimulation of Temporal Cortex
Rescues Functional Networks and Improves
Memory
Yousseff Ezzyat
University of Pennsylvania

Paul A. Wanda
University of Pennsylvania

Deborah F. Levy
University of Pennsylvania

Allison Kadel
University of Pennsylvania

Ada Aka
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Medical Neurobiology Commons, and the Neurology Commons

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty
Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

Recommended Citation
Ezzyat, Yousseff; Wanda, Paul A.; Levy, Deborah F.; Kadel, Allison; Aka, Ada; Pedisich, Isaac; Sperling, Michael R.; Sharan, Ashwini
D.; Lega, Bradley C.; Burks, Alexis; Gross, Robert E.; Inman, Cory S.; Jobst, Barbara C.; and Gorenstein, Mark A., "Closed-loop
Stimulation of Temporal Cortex Rescues Functional Networks and Improves Memory" (2018). Open Dartmouth: Faculty Open Access
Articles. 1044.
https://digitalcommons.dartmouth.edu/facoa/1044

https://digitalcommons.dartmouth.edu?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/674?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/692?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/1044?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Authors
Yousseff Ezzyat, Paul A. Wanda, Deborah F. Levy, Allison Kadel, Ada Aka, Isaac Pedisich, Michael R. Sperling,
Ashwini D. Sharan, Bradley C. Lega, Alexis Burks, Robert E. Gross, Cory S. Inman, Barbara C. Jobst, and
Mark A. Gorenstein

This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/1044

https://digitalcommons.dartmouth.edu/facoa/1044?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages


ARTICLE

Closed-loop stimulation of temporal cortex rescues
functional networks and improves memory
Youssef Ezzyat et al.#

Memory failures are frustrating and often the result of ineffective encoding. One approach to

improving memory outcomes is through direct modulation of brain activity with electrical

stimulation. Previous efforts, however, have reported inconsistent effects when using open-

loop stimulation and often target the hippocampus and medial temporal lobes. Here we use a

closed-loop system to monitor and decode neural activity from direct brain recordings in

humans. We apply targeted stimulation to lateral temporal cortex and report that this sti-

mulation rescues periods of poor memory encoding. This system also improves later recall,

revealing that the lateral temporal cortex is a reliable target for memory enhancement. Taken

together, our results suggest that such systems may provide a therapeutic approach for

treating memory dysfunction.

DOI: 10.1038/s41467-017-02753-0 OPEN

. Correspondence and requests for materials should be addressed to M.J.K. (email: kahana@sas.upenn.edu). #A full list of authors and their affliations appears
at the end of the paper.
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Research on human episodic memory has shown that whe-
ther information is remembered or forgotten depends on
neural events that transpire during encoding. Spectral

power recorded using intracranial electrophysiology1 and blood-
oxygen-level-dependent functional magnetic resonance imaging
(fMRI) signal2 show that activity in many cortical and subcortical
regions differentiates learned information that is likely to be
remembered from information that is likely to be forgotten.
Differences in neural activity during encoding therefore predict
intra-individual variability in later memory performance, sug-
gesting that modulating neural activity when the brain is unlikely
to encode successfully could improve overall performance by
rescuing network activity.

A promising tool for modulation of neural activity is direct
brain stimulation, in which electrical current is applied via elec-
trodes implanted on or directly in the brain parenchyma. Direct
brain stimulation is a standard tool in the treatment of motor
dysfunction in Parkinson’s disease and seizure onset in epilepsy3–
6, and has recently been explored as a therapy for psychiatric
conditions7,8. Direct brain stimulation treatment commonly
involves continuous (i.e., open-loop) high-frequency stimulation,
although recent work has suggested improved effectiveness when
applying stimulation in response to specific brain states (i.e.,
closed-loop9,10).

Several studies have used direct brain stimulation of the human
hippocampus and medial temporal lobes (MTLs), core regions of
the brain’s memory network, to modulate neural activity and
performance during memory tasks. These studies used open-loop
designs, meaning that stimulation was not delivered in response
to ongoing neural activity. Although some studies using this
approach have suggested that such stimulation improves mem-
ory11–14, others have failed to show improvements or have shown
disruption15–20. This literature shows that direct open-loop sti-
mulation of the hippocampus and MTL is unlikely to reliably
improve memory, and suggests that stimulating other regions in
the memory network may be more effective for memory
enhancement.

Encoding activity in the left lateral temporal cortex (including
the middle portions of the inferior, middle, and superior temporal

gyri) measured with fMRI2 and intracranial electro-
encephalography (iEEG)1,21,22 predicts memory performance,
and stimulation mapping of this area has been shown to evoke
memory-like recollective phenomena23,24. Prior invasive25–27 and
non-invasive28–30 stimulation studies also suggest this region to
be a prime target for memory modulation. However, these studies
did not characterize the effect of lateral temporal cortex stimu-
lation in comparison with other targets. The previous work also
did not use stimulation to rescue intervals of poor memory
encoding by timing stimulation based on recordings of ongoing
neural activity.

Here we evaluate the use of lateral temporal cortex as a sti-
mulation target by deploying a closed-loop architecture for sen-
sing and stimulating the brain during a memory task. We
compare the effect of lateral temporal cortex stimulation to both a
within-subject non-stimulated condition and an independent
non-lateral temporal stimulation group. We use multivariate
classifiers that are individualized to each subject to decode neural
activity during memory encoding and trigger stimulation online
in response to patterns of neural activity that are associated with
later forgetting. By using classification within a closed-loop sys-
tem, we maximize sensitivity to detect poor encoding states and
account for the fact that direct brain stimulation has distributed
effects on physiology31,32 that depend on the state of the brain at
the time of stimulation delivery33–37.

Results
Classifying recall probability from neural activity. We recruited
25 neurosurgical patients undergoing clinical monitoring for
epilepsy to participate in sessions of a delayed free recall memory
task (Fig. 1a). Subjects performed at least three record-only ses-
sions of free recall from which we trained a multivariate classifier
to discriminate patterns of neural activity during encoding that
predicted memory. We fit penalized logistic regression classifiers
to record-only data from each subject, producing a set of model
weights that map features of iEEG activity to an output prob-
ability of later word recall (Fig. 1b).

We then used this model in subsequent sessions to decode the
probability of recall from neural activity online during the
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Fig. 1 Closed-loop approach. a For each list of the free recall task, subjects encoded 12 nouns presented sequentially, followed by an arithmetic distractor
and the verbal recall phase. Subjects performed at least three sessions of record-only free recall. b After the record-only sessions, we use spectral
decomposition to measure power at a set of frequencies ranging from 3 to 180 Hz for each encoded word. We used the patterns of spectral power across
electrodes to train a penalized logistic regression classifier to discriminate encoding activity during subsequently recalled words from subsequently
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produced a set of frequency × electrode features to which we applied the classifier trained on the record-only data. If the resulting estimated probability of
recall was below 0.5, we triggered 500ms of stimulation to either the lateral temporal cortex or a control target
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encoding phase of the task (Fig. 1c). On Stim lists, if the predicted
probability of recall was below 0.5, the system triggered 500 ms of
bipolar stimulation across an adjacent pair of channels. We
predicted that this would disrupt poor encoding states and
improve memory performance. On NoStim lists, we used the
classifier to estimate recall probabilities but did not trigger
stimulation. This allowed us to control for the memory state
when assessing the effect of stimulation on recall probability of
stimulated items. It also allowed us to determine whether the
record-only classifier generalized to the new closed-loop session.
We found that these classifiers reliably discriminated recalled
from not recalled words in the new session (NoStim list area
under the curve (AUC) = 0.61, t(28) = 7.5, P < 10−7 by a one
sample t-test, Fig. 2a). To determine what information the model
used to classify encoding trials we computed a Forward Model for
each patient using the classifier weights and neural encoding

activity34,38. Across subjects, this showed that the classifiers relied
on increased high-frequency activity (HFA) across the brain
(frontal, temporal, parietal, and occipital cortex), along with
widespread decreases in low-frequency activity to predict words
likely to be recalled (Fig. 2b; clusters outlined in gray were
significant at the P< 0.05 level by a one-sample t-test).

Stimulation increased the probability of word recall. We used a
generalized linear mixed effects (GLME) model (logistic regres-
sion with a binomial distribution) to model the individual trial-
level recalled/not recalled data across subjects, to determine how
stimulation affected the probability of word recall. The linear
mixed effects approach allows us to estimate the effect of sti-
mulation on probability of recall while accounting for hetero-
geneity in the amount of data collected from each subject. The
resulting parameter estimates reflect the change in odds asso-
ciated with each condition (Stim/NoStim and Lateral temporal
cortex/Non-lateral temporal). Stimulation of lateral temporal
cortex increased the odds of recalling stimulated words compared
with matched non-stimulated words (odds ratio = 1.18, t(3,828) =
2.04, P= 0.04, Fig. 3a) and compared with Non-lateral temporal
stimulation (t(5,864) = 2.60, P= 0.009). Stimulation led to a
nonsignificant decrease in recall odds in the Non-lateral temporal
group (odds ratio = 0.87, t(2,036) = −1.20, P= 0.23). The stimu-
lation targets that led to increased memory performance in the
lateral temporal cortex group clustered in the middle portion of
the left middle temporal gyrus (Fig. 4). Using a log-binomial
model39 to estimate the relative change in recall probability, we
found that lateral temporal cortex stimulation increased the
relative probability of item recall by 15% (t(3828) = 2.31, P= 0.02,
Supplementary Table 1). Subjects stimulated in lateral temporal
cortex were also more likely to remember unstimulated items that
flanked the stimulation (t(960) = 2.46, P= 0.01; interaction with
Non-lateral temporal stimulation t(1,406) = 2.48, P= 0.01).

We observed these different stimulation-related memory
outcomes in spite of the fact that the groups were matched in
several ways. The proportion of words on which the closed-loop
classifier triggered stimulation was roughly 0.50 (as intended) and
did not differ between the lateral temporal cortex and Non-lateral
temporal groups (lateral temporal cortex = 0.52, Non-lateral
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each electrode region by frequency feature, we computed a forward model-based estimate of the feature’s contribution to the classification decision34.
This analysis shows that the classifier used increased high-frequency power combined with decreased low-frequency power to predict successfully recalled
words (clusters significant at the P< 0.05 level by a one-sample t-test are outlined in gray, N= 25 record-only classifiers)
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temporal = 0.50, t(5,698) = 0.30, P= 0.71 by linear mixed effects
model). Stimulation also did not differ between the groups as a
function of word position within the list (position × group
interaction t(5,696) = − 0.84, P= 0.40). The groups showed
similar memory performance during the record-only sessions
(lateral temporal cortex = 26.1%, Non-lateral temporal = 29.8%, t
(24) = −0.87, P= 0.39 by two-sample t-test). We also analyzed
subsequent memory effects (SMEs) at the stimulated electrodes in
the record-only data, to determine whether the stimulated
electrodes showed different contributions to memory perfor-
mance across the groups. We found that power across the
frequency spectrum (2–200 Hz) was similarly predictive of
memory for the lateral temporal cortex and Non-lateral temporal
groups (Supplementary Figure 1a, b), indicating no difference
between groups in the stimulated electrode’s involvement in
encoding processes. We also did not find any relation between the
size of the SME at the stimulated electrode and stimulation’s
effect on behavior (Supplementary Figure 1c).

Neural evidence for improved encoding following stimulation.
We next asked how lateral temporal cortex stimulation influenced
neural activity to support memory encoding by comparing HFA
(70–200 Hz) between Stim and NoStim conditions. High-
frequency power predicts memory success1,37,40,41 and is
thought to reflect excitation of neural populations engaged during
cognition42,43. When comparing evoked HFA following stimu-
lation to matched unstimulated periods in electrodes placed in the
same lobe as the stimulation target, we did not observe significant
increases in HFA power following lateral temporal cortex sti-
mulation (Supplementary Fig. 2). This suggests that lateral tem-
poral cortex stimulation did not reliably modulate activity in
these target regions when aggregating data across subjects, which
was not surprising given that stimulation has heterogeneous
effects on downstream targets31,32, and that our subjects each
possessed a unique recording montage. We reasoned that a more
sensitive approach would be to assess the effect of stimulation on
neural activity using a model that accounts for this between-
subject variability.

The classifier that we trained on each subject’s record-only data
is an individualized model relating neural activity in that person
to a probability of recall, so we next asked whether these
classifiers could be used to decode the effects of stimulation on
neural activity. We assessed this by computing the change
in whole-brain classifier output for consecutive words (wi + 1 and
wi, for all stimulated words i). We did the same for matched
words on NoStim lists and compared these Δ classifier values
between the Stim and NoStim conditions for the lateral temporal
cortex group using a mixed model. This analysis showed increases
in classifier output following stimulation compared to the control
non-stimulated condition (estimate = 0.01, t(1,404) = 2.06,

P = 0.04 by linear mixed effects model, Fig. 3b), suggesting that
stimulation’s influence on neural activity was evident when using
the whole-brain classifier to decode the change in neural activity
post- stimulation.

Discussion
In this study we used closed-loop direct brain stimulation of the
human lateral temporal cortex to improve episodic memory
performance. By demonstrating that lateral temporal cortex sti-
mulation enhances memory, our findings show that stimulating
neural populations outside of the MTL can reliably improve
memory outcomes. We used a novel method for applying sti-
mulation by developing patient-specific models of neural activity
that were used to classify memory-related brain states. Stimula-
tion was then triggered to intervene in response to intervals when
memory function was predicted to be poor. The data suggest a
strategy for memory modulation that has applications for the
treatment of memory dysfunction.

In observing that closed-loop stimulation improves perfor-
mance in the free recall task, we show that stimulation can reli-
ably benefit memory if it is timed to rescue periods of poor
memory function. In order to predict when subjects would be in
poor memory encoding states, we used data collected during
performance of the free recall task to create models relating
whole-brain neural activity to memory outcomes. We found that
these models predicted variability in memory performance when
used in subsequent closed-loop sessions, suggesting that our
approach identified patterns of neural activity that predicted
memory performance in a stable manner over time. Stimulating
in this way led to both increased model estimates of recall
probability and increased memory performance, suggesting that
the system improved memory by rescuing periods of poor
memory function.

We also identify the lateral temporal cortex as a prime target
for modulating memory encoding, moving beyond prior work
that has attempted to influence episodic memory by stimulating
the hippocampus and MTL 12,14,15,20. Several previous studies
have investigated the role of the lateral temporal lobes in episodic
memory using direct brain stimulation23,25–27; our work further
demonstrates that closed-loop stimulation of this region can
reliably alter memory-related neural activity and memory per-
formance. As our classifier integrated activity over electrodes
implanted across the brain, the findings suggest that lateral
temporal cortex stimulation improves encoding by influencing a
distributed memory-supporting network. This is consistent with
the idea that stimulation of cortical areas at or near the surface of
the brain can affect neural activity in downstream-connected
targets and suggests applications of our approach to non-invasive
methods44.

L

Fig. 4 Stimulation targets rendered on an average brain surface. Targets showing numerical increase/decrease in free recall performance are shown in red/
blue. Memory-enhancing sites clustered in the middle portion of the left middle temporal gyrus (coordinate range X : − 67 to − 47; Y : − 51 to − 1; Z : − 33 to
8)
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Functional and structural connectivity between the stimulation
target and the rest of the brain may be useful in predicting the
effect of lateral temporal cortex stimulation on memory, as well as
the brain areas that are likely to be modulated by stimulation.
Connectivity defined using resting-state fMRI, for example, has
been shown to predict the effects of invasive and non-invasive
stimulation by identifying stimulation targets based on their
membership in large-scale functional networks45. Brain-wide
networks that underlie successful memory encoding show theta-
band iEEG synchrony, which could also be used to identify sti-
mulation targets in the memory network46. Measures of network
controllability based on connectivity could also be used to predict
the extent to which a stimulation target can control functional
dynamics in the memory network47.

Our system also provides a framework for developing therapies
to treat memory dysfunction. There is evidence that disorders
such as Alzheimer’s disease demonstrate network abnormalities
resulting from inhibitory dysfunction48 that can manifest early in
disease progression. Such changes in the balance between inhi-
bitory and excitatory activity within a neural population can lead
to alterations in the 1/f slope recorded in the local field poten-
tial49, with increased inhibition resulting in a steeper slope. We
found that the classifiers in our study relied on simultaneously
increased HFA and decreased low-frequency activity (i.e., a
decrease in the 1/f slope) to differentiate good and poor memory
states. Given that stimulation increased classifier estimates of
memory states, the data suggest modulation of the excitatory/
inhibitory balance to be a potential mechanism of action. Future
work could evaluate directly whether and how closed-loop sti-
mulation changes the excitatory/inhibitory balance in local and
remote sites in the memory network.

The current findings demonstrate that intervals of poor
memory encoding can be identified online and rescued with
targeted stimulation to the lateral temporal cortex. Using this
closed-loop stimulation approach in patients with epilepsy, we
provide proof of concept for the therapeutic treatment of memory
dysfunction.

Methods
Participants. Twenty-five patients undergoing intracranial electroencephalo-
graphic monitoring as part of clinical treatment for drug-resistant epilepsy were
recruited to participate in this study. Data were collected as part of a multi-center
project designed to assess the effects of electrical stimulation on memory-related
brain function. Data were collected at the following centers: Thomas Jefferson
University Hospital (Philadelphia, PA), University of Texas Southwestern Medical
Center (Dallas, TX), Emory University Hospital (Atlanta, GA), Dartmouth-
Hitchcock Medical Center (Lebanon, NH), Hospital of the University of Penn-
sylvania (Philadelphia, PA), and Mayo Clinic (Rochester, MN). The research
protocol was approved by the Institutional Review Board at each hospital and
informed consent was obtained from each participant. Electrophysiological data
were collected from electrodes implanted subdurally on the cortical surface as well
as depth electrodes within the brain parenchyma. In each case, the clinical team
determined the placement of the electrodes so as to best localize epileptogenic
regions. Subdural contacts were arranged in both strip and grid configurations. The
types of electrodes used for recording and stimulation varied across the data col-
lection sites in accordance with the preferences of the clinicians at each institution.
Across the sites, the following models of depth and surface (strip/grid) electrodes
were used (electrode diameters in parentheses): PMT Depthalon (0.8 mm); AdTech
Spencer RD (0.86 mm); AdTech Spencer SD (1.12 mm); AdTech Behnke-Fried
(1.28 mm); AdTech subdural strips and grids (2.3 mm).

Verbal memory task. Each subject participated in a delayed free-recall task in
which they were instructed to study lists of words for a later memory test; no
encoding task was used. Lists were composed of 12 words chosen at random and
without replacement from a pool of high frequency English nouns (http://memory.
psych.upenn.edu/WordPools). Each word remained on the screen for 1,600 ms,
followed by a randomly jittered 750–1,000 ms blank inter-stimulus interval.

Immediately following the final word in each list, participants performed a
distractor task (to attenuate the recency effect in memory, length = 20 s) consisting
of a series of arithmetic problems of the form A + B + C = ??, where A, B, and C
were randomly chosen integers ranging from 1 to 9. Following the distractor task

participants were given 30 s to verbally recall as many words as possible from the
list in any order; vocal responses were digitally recorded and later manually scored
for analysis. Each session consisted of 25 lists of this encoding-distractor-recall
procedure. Some subjects completed sessions of the free recall task using
categorized word lists, which were included in the electrophysiological analyses.
The categorized recall task is identical to the free recall task, with the exception that
the word pool was drawn from 25 semantic categories (e.g., fruit, furniture, office
supplies). Each list of 12 items in the categorized version of the task consisted of
four words drawn from each of three categories. Subject counts by task: N = 17 free
recall only; N = 2 categorized free recall only; N = 6 both free and categorized recall
(in separate sessions).

Stimulation methods. At the start of each session, we determined the safe
amplitude for stimulation using a mapping procedure in which stimulation was
applied at 0.5 mA, while a neurologist monitored for afterdischarges. This proce-
dure was repeated, incrementing the amplitude in steps of 0.5 mA, up to a max-
imum of 1.5 mA for depth contacts and 3.5 mA for cortical surface contacts. These
maximum amplitudes were chosen to be below the afterdischarge threshold and
below accepted safety limits for charge density50. For each stimulation session, we
passed electrical current through a single pair of adjacent electrode contacts. As the
electrode locations were determined strictly by the monitoring needs of the clin-
icians, we used a combination of anatomical and functional information to select
stimulation sites. If available, we prioritized electrodes in lateral temporal cortex, in
particular the middle portion of the middle temporal gyrus. To choose among these
regions in cases in which more than one was available, we selected the electrode
pair demonstrating the largest SME, in the high frequency range (70–200 Hz). In
cases in which no lateral temporal cortex contacts were available, we selected an
electrode pair at or near the largest SME elsewhere in the brain, targeting the
hippocampus, MTL cortex, prefrontal cortex, and parietal cortex if available. Sti-
mulation was delivered using charge-balanced biphasic rectangular pulses (pulse
width = 300 μs) at (10, 25, 50, 100, or 200) Hz frequency and (0.25 to 2.00) mA
amplitude (0.25 mA steps). The particular amplitude and frequency were chosen
based on a pre-test in which we stimulated the brain at each parameter combi-
nation, while the patient was at rest (no experimental task). The frequency ×
amplitude combination that maximized the change in classifier output was used in
the closed-loop memory task. In the memory task stimulation was always applied
for 500 ms in response to classifier-detected poor memory states (see below).
Participants performed one practice list followed by 25 task lists: lists 1–3 (plus the
practice list) were used to collect baseline spectral power data for normalizing input
features for the classifier; lists 4–25 consisted of 11 lists each of Stim and NoStim
conditions, randomly interleaved. On NoStim lists, stimulation was not triggered in
response to classifier output.

Anatomical localization. Cortical surface regions were delineated on pre-implant
whole brain volumetric T1-weighted MRI scans using Freesurfer51 according to the
Desikan–Kiliany atlas. Whole brain and high resolution MTL volumetric seg-
mentation was also performed using the T1-weighted scan and a dedicated hip-
pocampal coronal T2-weighted scan with Advanced Normalization Tools (ANTS)
52 and Automatic Segmentation of Hippocampal Subfields multi-atlas segmenta-
tion methods53. Coordinates of the radiodense electrode contacts were derived
from a post-implant computed tomography and then registered with the MRI
scans using ANTS. Subdural electrode coordinates were further mapped to the
cortical surfaces using an energy minimization algorithm54. Two neuroradiologists
reviewed cross-sectional images and surface renderings to confirm the output of
the automated localization pipeline. Targets that were localized to the left inferior,
middle, and superior temporal gyri were classified as lateral temporal cortex. Any
target outside these regions was classified as Non-lateral temporal.

Electrophysiological data processing. Intracranial data were recorded using one
of the following clinical EEG systems (depending the site of data collection): Nihon
Kohden EEG-1200, Natus XLTek EMU 128 or Grass Aura-LTM64. Depending on
the amplifier and the preference of the clinical team, the signals were sampled at
either 500, 1,000, or 1,600 Hz and were referenced to a common contact placed
intracranially, on the scalp, or mastoid process. Intracranial electrophysiological
data were filtered to attenuate line noise (5 Hz band-stop fourth order Butterworth,
centered on 60 Hz). To eliminate potentially confounding large-scale artifacts and
noise on the reference channel, we re-referenced the data using a bipolar montage
[1]. To do so, we identified all pairs of immediately adjacent contacts on every
depth, strip and grid and took the difference between the signals recorded in each
pair. The resulting bipolar timeseries was treated as a virtual electrode and used in
all subsequent analysis. We performed spectral decomposition (8 frequencies from
3 to 180 Hz, logarithmically spaced; Morlet wavelets; wave number = 5) for the
0–1,366 ms epoch relative to word onset. Mirrored buffers (length = 1,365 ms) were
included before and after the interval of interest and then discarded to avoid
convolution edge effects. The resulting time-frequency data were then log-trans-
formed, averaged over time, and z-scored within session and frequency band across
word presentation events.
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Multivariate classification. We included only data collected in record-only ses-
sions as input to a logistic regression classifier trained to discriminate encoding-
related activity predictive of whether a word was later remembered or forgotten.
We used spectral power averaged across the time dimension for each word
encoding epoch (0–1,366 ms relative to word onset) as the input data (informal
investigations suggested that spectral power outperformed features derived from
phase-based connectivity measures). Thus, the features for each individual word
encoding observation were the average power across time, at each of the eight
analyzed frequencies ×N electrodes. We used L2-penalization55 and set the penalty
parameter (C) to 2.4 × 10−4, based on the optimal penalty parameter calculated
across our large pre-existing dataset of free recall subjects37. We then computed
AUC to quantify classifier performance and repeated this procedure for all subjects.
AUC measures a classifier’s ability to identify true positives while minimizing false
positives, where chance AUC= 0.50. To ensure the classifier learned equally from
both classes (given the imbalance between recalled and not recalled exemplars), we
also weighted the penalty parameter in inverse proportion to the number of
exemplars of each class55. We assessed the significance of each classifier within-
subject using a permutation test in which we randomized the labels of recalled/not
recalled events in the training data, computed AUC and repeated the randomi-
zation 1,000 times to generate a null distribution of AUCs. Classification analyses
were programmed using the Matlab implementation of the LIBLINEAR library56.

We generated a forward model for each subject34 to assess the importance of
different features to classification

A ¼ ΣxW
σ2ŷ

where Σx is the data covariance matrix, W is the vector of weights obtained from
the fitted classifier, σ2ŷ is the variance of the logit-transform of the vector of
classifier outputs across all events, ŷ. The magnitude and direction of the values in
A reflect the strength of the relation between classifier output and each input
feature in x. We computed A separately for each subject and plot the average across
subjects in Fig. 2b.

Closed-loop decoding. The closed-loop free recall sessions consisted of one
practice list followed by 25 task lists: lists 1–3 were unstimulated and used (in
addition to the practice list) to collect baseline spectral power data for normalizing
the input features to the classifier; lists 4–25 consisted of 11 lists each of Stim and
NoStim conditions, randomly interleaved. On Stim lists, we extracted estimates of
spectral power from the 0–1,366 ms relative to each word encoding period. We
assessed power using parameters identical to those used to train the record-only
classifier (see Electrophysiological data processing): 8 frequencies from 3 to 180 Hz,
logarithmically spaced; Morlet wavelets; wave number = 5; log-transformed; aver-
aged over time within frequency and electrode; and z-scored based on the mean
and SD of the power features collected during the baseline lists. The distribution of
powers used for normalization was updated following each NoStim list. The
record-only classifier was applied to the resulting frequency × electrode features to
derive an estimated probability of recall. If this probability fell below 0.5, we
immediately triggered 500 ms of stimulation (mean interval between stimulation
onset and presentation of the next word = 962 ms ± 347 ms). On NoStim lists,
spectral power features and classifier output were computed identically to Stim
lists, but stimulation was disabled.

GLME model. We used GLME models using MatLab’s fitglme.m function to
estimate the effect of stimulation on memory performance. In the full model
assessing the interaction of stimulation and group on memory, we modeled the
recalled/not recalled status of each encoding trial for all subjects as a function of list
type (Stim/NoStim) and group (Lateral temporal cortex/Non-lateral temporal),
with random slopes and intercepts for the effect of stimulation for each subject and
unique stimulation target site (three subjects were stimulated at two different
targets in separate sessions). We included in the model stimulated words and
matched words from NoStim lists. The NoStim words were matched based on
whether classifier output during the closed-loop session was below threshold (i.e.
stimulation would have been applied had it been a Stim list). To estimate the effect
of stimulation within each of the Lateral temporal cortex/Non-lateral temporal
groups we then fit the same model separately for each group without the group
predictor.

We also used a GLME model to assess the influence of stimulation on memory
for neighboring trials. Here we identified unrecalled stimulated words (and
matched NoStim words) that were flanked in the forward and reverse directions by
one unstimulated word (or words that based on classifier output would have been
unstimulated, in the case of NoStim lists). We modeled the recall output using a
binomial model with the following predictors: Stim/NoStim and Lateral temporal/
Non-lateral temporal stimulation target, including random intercepts and slopes
for the within-subject factor.

Analysis of post-stimulation classifier. To assess the effect of lateral temporal
cortex stimulation on neural activity we used the classifier to decode the
stimulation-evoked change in physiology. We fit a GLME model to predict clas-
sifier output for the word encoding period immediately following delivery of a

stimulation train. We included matched intervals from NoStim lists by identifying
periods following words that would have been stimulated, and modeled the Stim/
NoStim list status of the observations, with separate slopes and intercepts for each
subject and unique stimulation target site.

Statistics. Data are presented as mean± SEM. Unless otherwise specified, all
statistical comparisons were conducted as two-tailed tests. Data distributions were
either visually inspected or assumed to be normal for parametric tests. We used
linear mixed effects models of the trial-level data to estimate the effect of stimu-
lation on behavior and classifier output (e.g., Figure 3), while accounting for
repeated subject and subject-stimulation location across observations. Samples
sizes were chosen to meet or exceed previously reported studies of invasive lateral
temporal cortex stimulation.

Data availability. All de-identified raw data and analysis code may be downloaded
at http://memory.psych.upenn.edu/Electrophysiological_Data.
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