44 research outputs found

    SFADI: the Speckle-Free Angular Differential Imaging method

    Get PDF
    We present a new processing technique aimed at significantly improving the angular differential imaging method (ADI) in the context of high-contrast imaging of faint objects nearby bright stars in observations obtained with extreme adaptive optics (EXAO) systems. This technique, named "SFADI" for "Speckle-Free ADI", allows to improve the achievable contrast by means of speckles identification and suppression. This is possible in very high cadence data, which freeze the atmospheric evolution. Here we present simulations in which synthetic planets are injected into a real millisecond frame rate sequence, acquired at the LBT telescope at visible wavelength, and show that this technique can deliver low and uniform background, allowing unambiguous detection of 10−510^{-5} contrast planets, from 100100 to 300300 mas separations, under poor and highly variable seeing conditions (0.80.8 to 1.51.5 arcsec FWHM) and in only 2020 min of acquisition. A comparison with a standard ADI approach shows that the contrast limit is improved by a factor of 55. We extensively discuss the SFADI dependence on the various parameters like speckle identification threshold, frame integration time, and number of frames, as well as its ability to provide high-contrast imaging for extended sources, and also to work with fast acquisitions.Comment: Accepted for publication in Ap

    Speckle statistics in adaptive optics images at visible wavelengths

    Full text link
    Residual speckles in adaptive optics (AO) images represent a well-known limitation on the achievement of the contrast needed for faint source detection. Speckles in AO imagery can be the result of either residual atmospheric aberrations, not corrected by the AO, or slowly evolving aberrations induced by the optical system. We take advantage of the high temporal cadence (1 ms) of the data acquired by the System for Coronagraphy with High-order Adaptive Optics from R to K bands-VIS forerunner experiment at the Large Binocular Telescope to characterize the AO residual speckles at visible wavelengths. An accurate knowledge of the speckle pattern and its dynamics is of paramount importance for the application of methods aimed at their mitigation. By means of both an automatic identification software and information theory, we study the main statistical properties of AO residuals and their dynamics. We therefore provide a speckle characterization that can be incorporated into numerical simulations to increase their realism and to optimize the performances of both real-time and postprocessing techniques aimed at the reduction of the speckle noise

    On-sky single-mode fiber coupling measurements at the Large Binocular Telescope

    Full text link
    The demonstration of efficient single-mode fiber (SMF) coupling is a key requirement for the development of a compact, ultra-precise radial velocity (RV) spectrograph. iLocater is a next generation instrument for the Large Binocular Telescope (LBT) that uses adaptive optics (AO) to inject starlight into a SMF. In preparation for commissioning iLocater, a prototype SMF injection system was installed and tested at the LBT in the Y-band (0.970-1.065 μ\mum). This system was designed to verify the capability of the LBT AO system as well as characterize on-sky SMF coupling efficiencies. SMF coupling was measured on stars with variable airmasses, apparent magnitudes, and seeing conditions for six half-nights using the Large Binocular Telescope Interferometer. We present the overall optical and mechanical performance of the SMF injection system, including details of the installation and alignment procedure. A particular emphasis is placed on analyzing the instrument's performance as a function of telescope elevation to inform the final design of the fiber injection system for iLocater.Comment: 11 pages, 7 figure

    IBIS-TRE-01: Conceptual design of the IBIS 2.0 polarimetric unit

    Get PDF
    This document describes the polarimetric and optical design of the IBIS 2.0 polarimetric unit. Designed for the German Vacuum Tower Telescope, it will allow to acquire high resolution spectro-polarimetric data of the solar photosphere and chromosphere

    Fast cadence speckle-free high-contrast imaging: SFADI and SFI

    Get PDF
    We present the research and developement status of the Speckle-Free Angular Differential Imaging method (SFADI), that we developed for the SHARK-VIS high-contrast imager for the LBT telescope. The technique bases on the acquisition of kHz frame-rate image sequences, which we combine in post-processing after speckle identification and suppression in each frame. With respect to the standard angular differential imaging, this method reaches a much smoother residual background and hence higher detection contrast at a given signal-to-noise ratio. Furthermore, it can reveal faint extended sources around bright central stars, and can use de-rotated images as well as quick second-lasting sequences. We reached a contrast of around 1e-5 for integration times of the order of tens of minutes at 100 mas for a 5.7 magnitude star, as we demonstrated on both a real-sky acquisition and at the SHARK-VIS laboratory test bench. Such long sequences though produces a large amount of data (around a million frames every 15 minutes) that we manage to processed in a reasonable computation time with the described implementation scheme

    Asteroid Distributions in the Ecliptic

    Full text link
    We present analysis of the asteroid surface density distribution of main belt asteroids (mean perihelion Δ≃2.404\Delta \simeq 2.404 AU) in five ecliptic latitude fields, -17 \gtsimeq \beta(\degr) \ltsimeq +15, derived from deep \textit{Large Binocular Telescope} (LBT) V−V-band (85% completeness limit V=21.3V = 21.3 mag) and \textit{Spitzer Space Telescope} IRAC 8.0 \micron (80% completeness limit ∼103μ\sim 103 \muJy) fields enabling us to probe the 0.5--1.0 km diameter asteroid population. We discovered 58 new asteroids in the optical survey as well as 41 new bodies in the \textit{Spitzer} fields. The derived power law slopes of the number of asteroids per square degree are similar within each ∼5\sim 5\degr{} ecliptic latitude bin with a mean value of −0.111±0.077 -0.111 \pm 0.077. For the 23 known asteroids detected in all four IRAC channels mean albedos range from 0.24±0.070.24 \pm 0.07 to 0.10±0.050.10 \pm 0.05. No low albedo asteroids (pVp_{V} \ltsimeq 0.1) were detected in the \textit{Spitzer} FLS fields, whereas in the SWIRE fields they are frequent. The SWIRE data clearly samples asteroids in the middle and outer belts providing the first estimates of these km-sized asteroids' albedos. Our observed asteroid number densities at optical wavelengths are generally consistent with those derived from the Standard Asteroid Model within the ecliptic plane. However, we find an over density at \beta \gtsimeq 5\degr{} in our optical fields, while the infrared number densities are under dense by factors of 2 to 3 at all ecliptic latitudes.Comment: 35 pages including 5 figures, accepted to The Astronomical Journa

    BRUTE, PSF Reconstruction for the SOUL pyramid-based Single Conjugate Adaptive Optics facility of the LBT

    Full text link
    The astronomical applications greatly benefit from the knowledge of the instrument PSF. We describe the PSF Reconstruction algorithm developed for the LBT LUCI instrument assisted by the SOUL SCAO module. The reconstruction procedure considers only synchronous wavefront sensor telemetry data and a few asynchronous calibrations. We do not compute the Optical Transfer Function and corresponding filters. We compute instead a temporal series of wavefront maps and for each of these the corresponding instantaneous PSF. We tested the algorithm both in laboratory arrangement and in the nighttime for different SOUL configurations, adapting it to the guide star magnitudes and seeing conditions. We nick-named it "BRUTE", Blind Reconstruction Using TElemetry, also recalling the one-to-one approach, one slope-to one instantaneous PSF the algorithm applies.Comment: 11 pages, 7 figures, Proceeding of the SPIE Conference 12185, Adaptive Optics Systems VIII, 1218540 (29 August 2022

    LBT SOUL data as a science test bench for MICADO PSF-R tool

    Full text link
    Current state-of-the-art adaptive optics (AO) provides ground-based, diffraction-limited observations with high Strehl ratios (SR). However, a detailed knowledge of the point spread function (PSF) is required to fully exploit the scientific potential of these data. This is even more crucial for the next generation AO instruments that will equip 30-meter class telescopes, as the characterization of the PSF will be mandatory to fulfill the planned scientific requirements. For this reason, there is a growing interest in developing tools that accurately reconstruct the observed PSF of AO systems, the so-called PSF reconstruction. In this context, a PSF-R service is a planned deliverable for the MICADO@ELT instrument and our group is in charge of its development. In the case of MICADO, a blind PSF-R approach is being pursued to have the widest applicability to science cases. This means that the PSF is reconstructed without extracting information from the science data, relying only on telemetry and calibrations. While our PSF-R algorithm is currently being developed, its implementation is mature enough to test performances with actual observations. In this presentation we will discuss the reliability of our reconstructed PSFs and the uncertainties introduced in the measurements of scientific quantities for bright, on-axis observations taken with the SOUL+LUCI instrument of the LBT. This is the first application of our algorithm to real data. It demonstrates its readiness level and paves the way to further testing. Our PSF-R algorithm is able to reconstruct the SR and full-width at half maximum of the observed PSFs with errors smaller than 2% and 4.5%, respectively. We carried out the scientific evaluation of the obtained reconstructed PSFs thanks to a dedicated set of simulated observations of an ideal science case.Comment: 10 pages, 3 figures. Proceeding of the SPIE conference Adaptive Optics Systems VIII, SPIE Astronomical Telescopes + Instrumentation 2022 (paper 12185-12). arXiv admin note: substantial text overlap with arXiv:2209.0156
    corecore