28 research outputs found

    In vivo heating of pacemaker leads during magnetic resonance imaging

    Get PDF
    Aims Magnetic resonance imaging (MRI) is well established as an important diagnostic tool in medicine. However, the presence of a cardiac pacemaker is usually regarded as a contraindication for MRI due to safety reasons. In this study, heating effects at the myocardium-pacemaker lead tip interface have been investigated in a chronic animal model during MRI at 1.5 Tesla. Methods and results Pacemaker leads with additional thermocouple wires as temperature sensors were implanted in nine animals. Temperature increases of up to 20°C were measured during MRI of the heart. Significant impedance and minor stimulation threshold changes could be seen. However, pathology and histology could not clearly demonstrate heat-induced damage. Conclusions MRI may produce considerable heating at the lead tip. Changes of pacing parameters due to MRI could be seen in chronic experiments. Potential risk of tissue damage cannot be excluded even though no reproducible alterations at the histological level could be foun

    Prosthetic heart valve evaluation by magnetic resonance imaging

    Get PDF
    Objective: To evaluate the potential of magnetic resonance imaging (MRI) for evaluation of velocity fields downstream of prosthetic aortic valves. Furthermore, to provide comparative data from bileaflet aortic valve prostheses in vitro and in patients. Methods: A pulsatile flow loop was set up in a 7.0 Tesla MRI scanner to study fluid velocity data downstream of a 25 mm aortic bileaflet heart valve prosthesis. Three dimensional surface plots of velocity fields were displayed. In six NYHA class I patients blood velocity profiles were studied downstream of their St. Jude Medical aortic valves using a 1.5 Tesla MRI whole-body scanner. Blood velocity data were displayed as mentioned above. Results: Fluid velocity profiles obtained from in vitro studies 0.25 valve diameter downstream of the valve exhibited significant details about the cross sectional distribution of fluid velocities. This distribution completely reflected the valve design. Blood velocity profiles in humans were considerably smoother and in some cases skewed with the highest velocities toward the anterior-right ascending aortic wall. Conclusion: Display and interpretation of fluid and blood velocity data obtained downstream of prosthetic valves is feasible both in vitro and in vivo using the MRI technique. An in vitro model with a straight tube and the test valve oriented orthogonally to the long axis of the test tube does not entail fluid velocity profiles which are compatible to those obtained from humans, probably due to the much more complex human geometry, and variable alignment of the valve with the ascending aorta. With the steadily improving quality of MRI scanners this technique has significant potential for comparative in vitro and in vivo hemodynamic evaluation of heart valve

    Real-Time Ultrasound/MRI Fusion for Suprasacral Parallel Shift Approach to Lumbosacral Plexus Blockade and Analysis of Injectate Spread:An Exploratory Randomized Controlled Trial

    Get PDF
    Fused real-time ultrasound and magnetic resonance imaging (MRI) may be used to improve the accuracy of advanced image guided procedures. However, its use in regional anesthesia is practically nonexistent. In this randomized controlled crossover trial, we aim to explore effectiveness, procedure-related outcomes, injectate spread analyzed by MRI, and safety of ultrasound/MRI fusion versus ultrasound guided Suprasacral Parallel Shift (SSPS) technique for lumbosacral plexus blockade. Twenty-six healthy subjects aged 21–36 years received two SSPS blocks (20 mL 2% lidocaine-epinephrine [1 : 200,000] added 1 mL diluted contrast) guided by ultrasound/MRI fusion versus ultrasound. Number (proportion) of subjects with motor blockade of the femoral and obturator nerves and the lumbosacral trunk was equal (ultrasound/MRI, 23/26 [88%]; ultrasound, 23/26 [88%]; p=1.00). Median (interquartile range) preparation and procedure times (s) were longer for the ultrasound/MRI fusion guided technique (686 [552–1023] versus 196 [167–228], p<0.001 and 333 [254–439] versus 216 [176–294], p=0.001). Both techniques produced perineural spread and corresponding sensory analgesia from L2 to S1. Epidural spread and lidocaine pharmacokinetics were similar. Different compartmentalized patterns of injectate spread were observed. Ultrasound/MRI fusion guided SSPS was equally effective and safe but required prolonged time, compared to ultrasound guided SSPS. This trial is registered with EudraCT (2013-004013-41) and ClinicalTrials.gov (NCT02593370)

    Total Cavo-Pulmonary Connection

    No full text

    In vivo heating of pacemaker leads during magnetic resonance imaging

    Full text link
    Aims Magnetic resonance imaging (MRI) is well established as an important diagnostic tool in medicine. However, the presence of a cardiac pacemaker is usually regarded as a contraindication for MRI due to safety reasons. In this study, heating effects at the myocardium-pacemaker lead tip interface have been investigated in a chronic animal model during MRI at 1.5 Tesla. Methods and results Pacemaker leads with additional thermocouple wires as temperature sensors were implanted in nine animals. Temperature increases of up to 20°C were measured during MRI of the heart. Significant impedance and minor stimulation threshold changes could be seen. However, pathology and histology could not clearly demonstrate heat-induced damage. Conclusions MRI may produce considerable heating at the lead tip. Changes of pacing parameters due to MRI could be seen in chronic experiments. Potential risk of tissue damage cannot be excluded even though no reproducible alterations at the histological level could be foun
    corecore