19 research outputs found

    Error growth in the Mesosphere and Lower Thermosphere Based on Hindcast Experiments in a Whole Atmosphere Model

    Get PDF
    The capability to forecast conditions in the mesosphere and lower thermosphere is investigated based on 30‐day hindcast experiments that were initialized bimonthly during 2009 and 2010. The hindcasts were performed using the Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCMX) with data assimilation provided by the Data Assimilation Research Testbed (DART) ensemble Kalman filter. Analysis of the WACCMX+DART hindcasts reveals several important features that are relevant to forecasting the middle atmosphere. The results show a clear dependence on spatial scale, with the slowest error growth occurring in the zonal mean and the fastest error growth occurring for small‐scale waves. The error growth rate is also found to be significantly greater in the upper mesosphere and lower thermosphere compared to in the upper stratosphere to lower mesosphere, suggesting that the forecast skill decreases with increasing altitude. The results demonstrate that the errors in the lower thermosphere reach saturation, on average, in less than 5 days, at least with the current version of WACCMX+DART. A seasonal dependency to the error growth is found at high latitudes in the Northern and Southern Hemispheres but not in the tropics or global average. We additionally investigate the error growth rates for migrating and nonmigrating atmospheric tides and find that the errors saturate after ∼5 days for tides in the lower thermosphere. The results provide an initial assessment of the error growth rates in the mesosphere and lower thermosphere and are relevant for understanding how whole atmosphere models can potentially improve space weather forecasting

    First Results From the Ionospheric Extension of WACCM-X During the Deep Solar Minimum Year of 2008

    Get PDF
    New ionosphere and electrodynamics modules have been incorporated in the thermosphere and ionosphere eXtension of the Whole Atmosphere Community Climate Model (WACCM‐X), in order to self‐consistently simulate the coupled atmosphere‐ionosphere system. The first specified dynamics WACCM‐X v.2.0 results are compared with several data sets, and with the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIE‐GCM), during the deep solar minimum year. Comparisons with Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite of temperature and zonal wind in the lower thermosphere show that WACCM‐X reproduces the seasonal variability of tides remarkably well, including the migrating diurnal and semidiurnal components and the nonmigrating diurnal eastward propagating zonal wavenumber 3 component. There is overall agreement between WACCM‐X, TIE‐GCM, and vertical drifts observed by the Communication/Navigation Outage Forecast System (C/NOFS) satellite over the magnetic equator, but apparent discrepancies also exist. Both model results are dominated by diurnal variations, while C/NOFS observed vertical plasma drifts exhibit strong temporal variations. The climatological features of ionospheric peak densities and heights (NmF2 and hmF2) from WACCM‐X are in general agreement with the results derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data, although the WACCM‐X predicted NmF2 values are smaller, and the equatorial ionization anomaly crests are closer to the magnetic equator compared to COSMIC and ionosonde observations. This may result from the excessive mixing in the lower thermosphere due to the gravity wave parameterization. These data‐model comparisons demonstrate that WACCM‐X can capture the dynamic behavior of the coupled atmosphere and ionosphere in a climatological sense
    corecore