28 research outputs found

    KIAA1840 mutations cause ARCMT2

    Get PDF
    Charcot–Marie–Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/ KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot–Marie–Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot–Marie–Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/ KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot–Marie–Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot–Marie–Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot–Marie-Tooth disease (CMT2A2/HMSN2A2/ MFN2 , CMT2B1/ LMNA , CMT2B2/ MED25 , CMT2B5/ NEFL , ARCMT2F/dHMN2B/ HSPB1 , CMT2K/ GDAP1 , CMT2P/ LRSAM1 , CMT2R/ TRIM2 , CMT2S/ IGHMBP2 , CMT2T/ HSJ1 , CMTRID/ COX6A1 , ARAN-NM/ HINT and GAN/ GAN ), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/ PGN , SPG15/ ZFYVE26, SPG21/ ACP33 , SPG35/ FA2H , SPG46/ GBA2 , SPG55/ C12orf65 and SPG56/ CYP2U1 ), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum ( SLC12A6 ) . Mitochondrial disorders related to Charcot–Marie–Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot–Marie–Tooth disease type 2H on chromosome 8q13-21.1 was excluded by linkage analysis. Pedigrees originated in Italy, Brazil, Canada, England, Iran, and Japan. Interestingly, we identified 15 ALS5/SPG11/ KIAA1840 mutations in 12 families (two sequence variants were never reported before, p.Gln198* and p.Pro2212fs*5). No large deletions/duplications were detected in these patients. The novel mutations seemed to be pathogenic since they co-segregated with the disease in all pedigrees and were absent in 300 unrelated controls. Furthermore, in silico analysis predicted their pathogenic effect. Our results indicate that ALS5/SPG11/ KIAA1840 is the causative gene of a wide spectrum of clinical features, including autosomal recessive axonal Charcot–Marie–Tooth disease

    Role of DNA Methylation Profile in Diagnosing Astroblastoma: A Case Report and Literature Review

    Get PDF
    Astroblastoma is a rare tumor of the central nervous system (CNS) with uncertain clinical behavior. Recently, DNA methylation profiling has been shown to provide a highly robust and reproducible approach for the classification of all CNS tumors across different age groups. By using DNA methylation profiling, a subset of CNS high-grade tumors with astroblastoma-like morphology characterized by the meningioma 1 gene (MN1) rearrangements, has been identified; they were termed “CNS high-grade neuroepithelial tumors with MN1 alteration” (CNS-HGNET-MN1). Here, we describe a case of CNS-HGNET-MN1 diagnosed by DNA methylation profiling, using Illumina Infinium HumanMethylationEPIC BeadChip (EPIC), that offers the opportunity to conduct a brief literature review. The patient presented with an episode of partial seizures involving the right hemisoma. A gross total resection was performed. No other treatment was proposed in light of the histological and molecular findings. After 21 months, the patient is disease-free in good clinical conditions. Also in view of this case, we recommend DNA-methylation profiling as an important tool for diagnosis and more effective patient stratification and management

    Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile

    Get PDF
    Background: Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. Results: We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the “episignature” associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. Conclusions: We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches

    Melanotic Neuroectodermal Tumor of Infancy (MNTI) and Pineal Anlage Tumor (PAT) Harbor A Medulloblastoma Signature by DNA Methylation Profiling

    Get PDF
    MNTI is a rare tumor of indeterminate histogenesis and molecular signature. We performed methylation and copy number variation (CNV) profiles in patients with MNTI (n = 7) and PAT (n = 1) compared to the methylation brain tumor classifier v11b4 (BT-C) and the medulloblastoma (MB) classifier group 3/4 v1.0 (MB3/4-C). The patients’ mean age was 8 months (range: 4–48). The BT-C classified five MNTIs and one PAT (relapse) as class family MB-G3/G4, subclass group 3 (score: >0.9). The remaining two MNTIs and PAT (primary) were classified as class family plexus tumor, subclass pediatric (scores: >0.45). The MB3/4-C classified all MNTIs as high-risk MB-G3, Subtype II (score: >0.45). The primary PAT was classified as subtype III (score: 0.99) and its relapse as subtype II/III. MNTI and PAT clustered close to MB-G3. CNV analysis showed multiple rearrangements in one PAT and two MNTIs. The median follow-up was 54 months (four MNTIs in remission, one PAT died). In conclusion, we demonstrated that MNTI shares a homogenous methylation profile with MB-G3, and possibly with PAT. The role of a multipotent progenitor cell (i.e., early cranial neural crest cell) in their histogenesis and the influence of the anatomical site, tumor microenvironment, and other cytogenetic events in their divergent biologic behavior deserve further investigation

    CNS tumor with CREBBP::BCORL1 Fusion and pathogenic mutations in BCOR and CREBBP: expanding the spectrum of BCOR-altered tumors

    No full text
    : The fifth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors introduced the new tumor type CNS tumor with BCOR internal tandem duplication (ITD), characterized by a distinct DNA methylation profile and peculiar histopathological features, including a circumscribed growth pattern, ependymoma-like perivascular pseudorosettes, microcystic pattern, absent or focal GFAP immunostaining, OLIG2 positivity, and BCOR immunoreactivity. We describe a rare case of a CNS tumor in a 45-year-old man with histopathological and immunohistochemical features overlapping the CNS tumor with BCOR internal tandem duplication (ITD) but lacking BCOR immunostaining and BCOR ITD. Instead, the tumor showed CREBBP::BCORL1 fusion and pathogenic mutations in BCOR and CREBBP, along with a DNA methylation profile matching the "CNS tumor with EP300:BCOR(L1) fusion" methylation class. Two CNS tumors with fusions between CREBBP, or its paralog EP300, and BCORL1, and approximately twenty CNS tumors with CREBBP/EP300::BCOR fusions have been reported to date. They exhibited similar ependymoma-like features or a microcystic pattern, along with focal or absent GFAP immunostaining, and shared the same DNA methylation profile. Given their morphological and epigenetic similarities, circumscribed CNS tumors with EP300/CREBBP::BCOR(L1) fusions and CNS tumors with BCOR ITD may represent variants of the same tumor type. The ependymoma-like aspect coupled with the lack of diffuse GFAP immunostaining and the presence of OLIG2 positivity are useful clues for recognizing these tumors in histopathological practice. The diagnosis should be confirmed after testing for BCOR(L1) gene fusions and BCOR ITD

    Jejunal atresia and anterior chamber anomalies: Further delineation of the Strømme syndrome

    No full text
    Strømme syndrome is a rare multiple congenital malformation syndrome consisting in apple peel intestinal atresia, ocular anomalies, microcephaly and developmental delay. To date, this condition was described in a couple of sibs and 7 additional sporadic patients. We report on a 11-month-old female, who requested surgical correction for jejunal atresia shortly after birth and also presented with megalocornea and persistence of the pupillary membrane. Microcephaly and developmental delay were absent at last examination. An oligonucleotide CGH-array analysis excluded cryptic chromosome rearrangement(s). Comparison of the previously published and present patients added some details on the natural history of Strømme syndrome. Delivery is usually performed preterm possibly due to polyhydramnios. Birth parameters, especially head circumference, are commonly at the lower end of the normal range. Microcephaly is more frequently but not constantly observed in older individuals, thus suggesting a progressive course, and may relate to an underlying neuronal migration defect. Jejunal atresia has an apple peel appearance in most but not all patients and its post-surgical course is usually uneventful. The ocular phenotype comprises a wide range of anterior chamber anomalies with sclerocornea/corneal leukoma being the most common. © 2010 Elsevier Masson SAS. All rights reserved

    Identification of a novel duplication in the APC gene using multiple ligation probe amplification in a patient with familial adenomatous polyposis

    No full text
    Germline mutations in the adenomatous polyposis coli (APC) gene cause familial adenomatous polyposis (FAP), an autosomal dominant disease characterized by hundreds to thousands of adenomatous polyps in the colon and rectum, with progression to colorectal cancer. The majority of APC mutations are nucleotide substitutions and frameshift mutations that result in truncated proteins. Recently, large genomic alterations of the APC gene have been reported in EAR DNA from 15 FAP patients, in whom no APC germline mutations were detected with denaturing high performance liquid chromatography, was analyzed with multiplex ligation-dependent probe amplification (MLPA) to evaluate gross genomic alterations in the APC gene. In one case, MLPA identified a novel duplication of exons 2-6 in one copy of the APC gene. Reverse transcriptase-polymerase chain reaction revealed that the mutant allele contained an in-frame multiexon duplication including 18 nucleotides located in exon 2, upstream of the ATG initiation codon. The presence of a premature stop codon in the duplicated sequence leads to the synthesis of a truncated APC polypeptide. These findings highlight the utility of evaluating infrequent APC mutation events in RAP patients using MLPA. (C) 2008 Elsevier Inc. All rights reserved

    Longitudinal hormonal evaluation in a patient with disorder of sexual development, 46,XY karyotype and one NR5A1 mutation.

    No full text
    Steroidogenic factor 1 (encoded by the NR5A1 gene) is a critical regulator of reproduction, controlling transcription of key genes involved in sexual dimorphism. To date, NR5A1 variants have been found in individuals with a 46,XY karyotype and gonadal dysgenesis, as well as with a wide spectrum of genital anomalies and, in some patients, with adrenal insufficiency. We describe evolution of gonadal function, from the neonatal period to puberty, in a patient with a 46,XY karyotype, a disorder of sexual development, and a mutation (c.691_699dupCTGCAGCTG) in the NR5A1 gene. The patient, ascertained at birth due to ambiguous genitalia, showed normal values of plasma testosterone in the late neonatal period. Evaluation of the hormonal profile over time indicated severe tubular testicular hypofunction suggestive for a 46,XY disorder of gonadal development. A comprehensive review of published reports of 46,XY and disordered sexual development related to the NR5A1 gene confirmed the clinical and hormonal variability in patients with NR5A1 mutations. Analysis of multiple data allowed us to define the most common features associated with NR5A1 mutations. We further confirmed the indication to perform NR5A1 screening in patients with 46,XY karyotype and disordered sexual development even when Müllerian structures appear to be absent and plasma testosterone levels are within the normal range for age. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc

    Clinical features predicting identification of CDKN2A mutations in Italian patients with familial cutaneous melanoma

    No full text
    CDKN2A is the most common, most penetrant gene whom germline mutations predisposing to cutaneous familial melanoma (FAM). Multiple primary melanoma (MPM), early age at onset, >2 affected members and pancreatic cancer are consistent features predicting positive test. However, the impact that cumulative clinical features have on the likelihood of molecular testing is unknown. In this work, genotype-phenotype correlations focused on selected clinical features were performed in 100 Italian FAM unrelated patients. Molecular studies of CDKN2A mutations were performed by direct sequencing. Statistical study included multiple correspondence analysis, uni- and multivariate analyses, and individual patient's probability calculation. MPM, >2 affected family members, Breslow thickness >0.4 mm, and age at onset <= 41 years were the unique independent features predicting positive CDKN2A screening. The rate of positive testing ranged from 93.2% in the presence of all of them, to 0.4% in their absence. The contribution of each of them was quantified accordingly, with MPM being the most significant. These findings confirm previous data and add novel insights for the role of accurate patients' selection in CDKN2A screening. (C) 2011 Elsevier Ltd. All rights reserved
    corecore