47 research outputs found

    Editorial: Biotechnological Uses of Archaeal Proteins

    Get PDF
    Many industrial/biotechnological processes take place under extreme conditions of temperature, pH, salinity, or pressure which are not suitable for activities of proteins from model eukaryotic or common neutrophilic, mesophilic, and prokaryotic microorganisms. In contrast, Archaea offer a large panel of extremophile organisms that express proteins that are able to remain properly folded and functional under the harshest biophysical conditions

    Application of Affitins for Affinity Purification of Proteins

    No full text
    International audienc

    Construction of Synthetic VHH Libraries in Ribosome Display Format

    No full text
    International audienceSingle-domain antibodies, or VHH, represent an attractive molecular basis to design affinity proteins with favorable properties. Beyond high affinity and specificity for their cognate target, they usually show high stability and high production yields in bacteria, yeast, or mammalian cells. In addition to these favorable properties, their ease of engineering makes them useful for many applications. Until the past few years, the generation of VHH involved the immunization of a Camelidae with the target antigen, followed by a phage display selection using phage libraries encoding the VHH repertoire of the animal blood sample. However, this approach is constrained by the accessibility to the animals, and the output relies on the animal's immune system.Recently, synthetic VHH libraries have been designed to avoid the use of animals. Here, we describe the construction of VHH combinatorial libraries and their use for the selection of binders by ribosome display, a fully in vitro selection technique

    Novel Tn916-like elements confer aminoglycoside/macrolide co-resistance in clinical isolates of Streptococcus gallolyticus ssp. gallolyticus

    No full text
    International audienceBackground:Streptococcus gallolyticus ssp. gallolyticus (Sgg) is a commensal bacterium and an opportunistic pathogen. In humans it has been clinically associated with the incidence of colorectal cancer (CRC) and epidemiologically recognized as an emerging cause of infective endocarditis (IE). The standard therapy of Sgg includes the administration of a penicillin in combination with an aminoglycoside. Even though penicillin-resistant isolates have still not been reported, epidemiological studies have shown that this microbe is a reservoir of multiple acquired genes, conferring resistance to tetracyclines, aminoglycosides, macrolides and glycopeptides. However, the underlying antibiotic resistance mobilome of Sgg remains poorly understood.Objectives:To investigate the mobile genetic basis of antibiotic resistance in multiresistant clinical Sgg.Methods:Isolate NTS31106099 was recovered from a patient with IE and CRC at Nantes University Hospital, France and studied by Illumina WGS and comparative genomics. Molecular epidemiology of the identified mobile element(s) was performed using antibiotic susceptibility testing (AST), PCR, PFGE and WGS. Mobility was investigated by PCR and filter mating.Results:Two novel conjugative transposons, Tn6263 and Tn6331, confer aminoglycoside/macrolide co-resistance in clinical Sgg. They display classical family Tn916/Tn1545 modular architecture and harbour an aph(3')-III→sat4→ant(6)-Ia→erm(B) multiresistance gene cluster, related to pRE25 of Enterococcus faecium. These and/or closely related elements are highly prevalent among genetically heterogeneous clinical isolates of Sgg.Conclusions:Previously unknown Tn916-like mobile genetic elements conferring aminoglycoside/macrolide co-resistance make Sgg, collectively with other gut Firmicutes such as enterococci and eubacteria, a potential laterally active reservoir of these antibiotic resistance determinants among the mammalian gastrointestinal microbiota

    Draft Genome Sequences of Two Highly Erythromycin-Resistant Streptococcus gallolyticus subsp. gallolyticus Isolates Containing a Novel Tn916-Like Element, Tn6331

    No full text
    International audienceRecently, we reported the draft genome sequence of Streptococcus gal-lolyticus NTS31106099. It was found to contain a previously unknown putative Tn916-like conjugative transposon, Tn6263. Here, we report the draft genome sequences of two other clinical isolates, NTS31301958 and NTS31307655. Both of them contain another novel element, Tn6331, which is highly similar to Tn6263

    Draft Genome Sequences of Two Highly Erythromycin-Resistant Streptococcus gallolyticus subsp. gallolyticus Isolates Containing a Novel Tn916-Like Element, Tn6331

    No full text
    International audienceRecently, we reported the draft genome sequence of Streptococcus gal-lolyticus NTS31106099. It was found to contain a previously unknown putative Tn916-like conjugative transposon, Tn6263. Here, we report the draft genome sequences of two other clinical isolates, NTS31301958 and NTS31307655. Both of them contain another novel element, Tn6331, which is highly similar to Tn6263

    Draft Genome Sequence of Erythromycin-Resistant Streptococcus gallolyticus subsp. gallolyticus NTS 31106099 Isolated from a Patient with Infective Endocarditis and Colorectal Cancer

    No full text
    International audienceStreptococcus gallolyticus subsp. gallolyticus is known for its close association with infective endocarditis and colorectal cancer in humans. Here, we report the draft genome sequence of highly erythromycin-resistant strain NTS 31106099 isolated from a patient with infective endocarditis and colorectal cancer. Citation Kambarev S, Caté C, Corvec S, Pecorari F. 2015. Draft genome sequence of erythromycin-resistant Streptococcus gallolyticus subsp. gallolyticus NTS 31106099 isolated from a patient with infective endocarditis and colorectal cancer

    Type II Secretion System Secretin PulD Localizes in Clusters in the Escherichia coli Outer Membrane▿

    No full text
    The cellular localization of a chimera formed by fusing a monomeric red fluorescent protein to the C terminus of the Klebsiella oxytoca type II secretion system outer membrane secretin PulD (PulD-mCherry) in Escherichia coli was determined in vivo by fluorescence microscopy. Like PulD, PulD-mCherry formed sodium dodecyl sulfate- and heat-resistant multimers and was functional in pullulanase secretion. Chromosome-encoded PulD-mCherry formed fluorescent foci on the periphery of the cell in the presence of high (plasmid-encoded) levels of its cognate chaperone, the pilotin PulS. Subcellular fractionation demonstrated that the chimera was located exclusively in the outer membrane under these circumstances. A similar localization pattern was observed by fluorescence microscopy of fixed cells treated with green fluorescent protein-tagged affitin, which binds with high affinity to an epitope in the N-terminal region of PulD. At lower levels of (chromosome-encoded) PulS, PulD-mCherry was less stable, was located mainly in the inner membrane, from which it could not be solubilized with urea, and did not induce the phage shock response, unlike PulD in the absence of PulS. The fluorescence pattern of PulD-mCherry under these conditions was similar to that observed when PulS levels were high. The complete absence of PulS caused the appearance of bright and almost exclusively polar fluorescent foci

    Selection and Characterization of Her2 Binding-designed Ankyrin Repeat Proteins

    No full text
    International audienceDesigned ankyrin repeat proteins (DARPins) are a novel class of binding proteins that bind their target protein with high affinity and specificity and have very favorable expression and stability properties. We describe here the in vitro selection of DARPins against human epidermal growth factor receptor 2 (Her2), an important target for cancer therapy and diagnosis. Several DARPins bind to the same epitope as trastuzumab (Herceptin), but none were selected that bind to the epitope of pertuzumab (Omnitarg). Some of the selected DARPins bind with low nanomolar affinity (Kd = 7.3 nM) to the target. Further analysis revealed that all DARPins are highly specific and do not cross-react with epidermal growth factor receptor I (EGFR1) or any other investigated protein. The selected DARPins specifically bind to strongly Her2-overexpressing cell lines such as SKBR-3 but also recognize small amounts of Her2 on weakly expressing cell lines such as MCF-7. Furthermore, the DARPins also lead to a highly specific and strong staining of plasma membranes of paraffinated sections of human mamma-carcinoma tissue. Thus, the selected DARPins might be used for the development of diagnostic tests for the status of Her2 overexpression in different adenocarcinomas, and they may be further evaluated for their potential in targeted therapy since their favorable expression properties make the construction of fusion proteins very convenient

    Characterization of Affitin proteolytic digestion in biorelevant media and improvement of their stabilities via protein engineering

    No full text
    International audienceAffitins are a novel class of small 7 kDa artificial proteins which can be used as antibody substitutes in therapeutic, diagnostic and biotechnological applications. One challenge for this type of protein agent is their behaviour in the context of oral administration. The digestive system is central, and biorelevant media have fast emerged as relevant and reliable tools for evaluating the bioavailability of drugs. This study describes, for the first time, the stability of Affitins under simulated gastric and intestinal digestion conditions. Affitins appear to be degraded into stable fragments in in vitro gastric medium. We identified cleavage sites generated by pepsin that were silenced by site-directed mutagenesis. This protein engineering allowed us to enhance Affitin properties. We showed that a mutant M1 containing a double mutation of amino acid residues 6 and 7 in H4 and C3 Affitins acquired a resistance against proteolytic digestion. In addition, these mutations were beneficial for target affinity, as well as for production yield. Finally, we found that the mutated residues kept or increased the important pH and temperature stabilities of Affitins. These improvements are particularly sought after in the development of engineered binding proteins for research tools, preclinical studies and clinical applications
    corecore