2 research outputs found

    Raman Spectroscopy and Machine Learning for IDH Genotyping of Unprocessed Glioma Biopsies

    Get PDF
    Isocitrate dehydrogenase (IDH) mutational status is pivotal in the management of gliomas. Patients with IDH-mutated (IDH-MUT) tumors have a better prognosis and benefit more from extended surgical resection than IDH wild-type (IDH-WT). Raman spectroscopy (RS) is a minimally invasive optical technique with great potential for intraoperative diagnosis. We evaluated the RS’s ability to characterize the IDH mutational status onto unprocessed glioma biopsies. We extracted 2073 Raman spectra from thirty-eight unprocessed samples. The classification performance was assessed using the eXtreme Gradient Boosted trees (XGB) and Support Vector Machine with Radial Basis Function kernel (RBF-SVM). Measured Raman spectra displayed differences between IDH-MUT and IDH-WT tumor tissue. From the 103 Raman shifts screened as input features, the cross-validation loop identified 52 shifts with the highest performance in the distinction of the two groups. Raman analysis showed differences in spectral features of lipids, collagen, DNA and cholesterol/phospholipids. We were able to distinguish between IDH-MUT and IDH-WT tumors with an accuracy and precision of 87%. RS is a valuable and accurate tool for characterizing the mutational status of IDH mutation in unprocessed glioma samples. This study improves RS knowledge for future personalized surgical strategy or in situ target therapies for glioma tumors

    In vivo MRI measurement of microstructural constraints for direct drug delivery within the brain

    No full text
    Brain tissue microstructure may influence the efficient delivery of therapeutics within the brain. Diffusion Tensor Imaging (DTI) enables the depiction of tissue properties in vivo, and thus is potentially relevant for planning convection-enhanced delivery (CED) within the brain. We report on the quantitative assessment of the distribution of a Gadolinium solution infused by CED within the brain of a live ovine model. Infusate distributions were measured at multiple timepoints and compared to microstructural properties as depicted by DTI, thus demonstrating the impact of tissue features and catheter positioning on drug distribution in vivo
    corecore