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Simple Summary: Isocitrate dehydrogenase (IDH) mutation is one of the most important prognostic
markers in glioma tumors. Raman spectroscopy (RS) is an optical technique with great potential in
intraoperative molecular diagnosis and surgical guidance. We analyzed RS’s ability to detect the
IDH mutation onto unprocessed glioma biopsies. A total of 2073 Raman spectra were extracted from
38 tumor specimens. From the 103 Raman shifts screened, we identified 52 shifts (related to lipids,
collagen, DNA and cholesterol/phospholipids) with the highest performance in the distinction of
the two groups. We described 18 shifts never used before for IDH detection with RS in fresh or
frozen samples. We were able to distinguish between IDH-mutated and IDH-wild-type tumors with
an accuracy and precision of 87%. RS showed optimal accuracy and precision in discriminating
IDH-mutated glioma from IDH-wild-type tumors ex-vivo onto fresh surgical specimens.

Abstract: Isocitrate dehydrogenase (IDH) mutational status is pivotal in the management of gliomas.
Patients with IDH-mutated (IDH-MUT) tumors have a better prognosis and benefit more from
extended surgical resection than IDH wild-type (IDH-WT). Raman spectroscopy (RS) is a minimally
invasive optical technique with great potential for intraoperative diagnosis. We evaluated the RS’s
ability to characterize the IDH mutational status onto unprocessed glioma biopsies. We extracted
2073 Raman spectra from thirty-eight unprocessed samples. The classification performance was
assessed using the eXtreme Gradient Boosted trees (XGB) and Support Vector Machine with Ra-
dial Basis Function kernel (RBF-SVM). Measured Raman spectra displayed differences between
IDH-MUT and IDH-WT tumor tissue. From the 103 Raman shifts screened as input features, the
cross-validation loop identified 52 shifts with the highest performance in the distinction of the two
groups. Raman analysis showed differences in spectral features of lipids, collagen, DNA and choles-
terol/phospholipids. We were able to distinguish between IDH-MUT and IDH-WT tumors with an
accuracy and precision of 87%. RS is a valuable and accurate tool for characterizing the mutational
status of IDH mutation in unprocessed glioma samples. This study improves RS knowledge for
future personalized surgical strategy or in situ target therapies for glioma tumors.
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1. Introduction

Molecular classification of gliomas, the most common primary malignant brain tu-
mors in adults, allows a better prognostic and therapeutic stratification and, to date, is
the standard evaluation [1]. The treatment involves, when feasible, surgical resection [2]
followed, eventually, by radiotherapy and chemotherapy. Both molecular and immunohis-
tochemical data are routinely determined several days after samples collection, foreclosing
a personalized intraoperative surgical and oncological strategy.

The Isocitrate dehydrogenase (IDH) gene mutation is one of the most critical molecular
markers to influence oncological outcomes and tumor response to adjuvant treatments in
low and high-grade gliomas. Patients with IDH-mutated (IDH-MUT) tumors have better
overall and progression-free survival and benefit from more extended surgical resection
than IDH wild-type (IDH-WT) glioma patients. IDH mutation modifies the metabolic
activity and catabolic production of tumoral cells dramatically. In IDH mutant cells, the
conversion of isocitrate to α-ketoglutarate (α-KG) is abolished, whereas the production of
D-2-hydroxyglutarate (D-2-HG) is enhanced. D-2-HG, an oncometabolite, has a primary
role in gliomas oncogenesis, altering different processes involved in DNA and histones
methylation and gene expression that drives the cell toward a staminal phenotype.

The extent of surgical resection is one of the strongest prognostic element in IDH- MUT
glioma management [2–4]. Surgical excision has to be pursued up to functional boundaries
(i.e., eloquent cortical and subcortical sites) to achieve a gross-total or a supra-total resection,
possibly resulting in a transient postoperative neurological impairment that can delay
or, in the worst scenarios, exclude adjuvant therapies. Therefore, the balance between
immediate postoperative patients’ functional integrity and maximal tumor resection should
consider the tumor’s biological behaviour. In this light, non-invasive devices supplying
fast molecular analysis are advocated.

Raman spectroscopy (RS) [5,6] and similar optical technology (e.g., Fourier Transform
Infrared Spectroscopy (FTIR) [7,8]) resulted effective tools to discriminate between cancer
and normal tissue and, more recently, to investigate IDH mutational status [9,10]. RS studies
using fresh tissue samples are of primary importance to improve Raman measurement
in vivo, avoiding the well-known samples artefacts due to the histological blocks processing
and storage [11]. Only few studies can provide RS data from fresh glioma tissue [10].

In this study, we investigated RS’s capacity to distinguish IDH-MUT glioma biopsies
from IDH-WT glioma tumor ex-vivo on fresh tissue samples.

2. Materials and Methods
2.1. Study Population and Experimental Design

Thirty-eight (38) tumor samples were collected from adult subjects undergoing surgery
for presumptive glioma tumors. All procedures were performed with imaging and neuro-
physiological guidance [12,13] in order to achieve, when feasible, a safe supra-marginal
resection [3]. We collected 21 samples from IDH-mutated tumors and 17 samples from
IDH-WT tumors. All patients signed informed consent for the procedure. The study
was conducted in line with the 1964 Declaration of Helsinki and later amendments and
authorized by the ethic committee. Demographic, clinical, and spectroscopic features were
registered, analyzed and were reported in Table 1.
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Table 1. Demographic, clinical and pathological characteristics of the study population.

Characteristics IDH-MUT IDH-WT

Number of samples 21 17

Number of total spectra acquired (mean) 1133 (53.9) 940 (55.3)

Histological classification (n◦ of spectra):

-Astrocytoma, WHO grade II 1 (55) 1 (62)

-Oligodendroglioma, WHO grade II 4 (220) -

-Astrocytoma, WHO grade III 3 (141) 3 (167)

-Oligodendroglioma, WHO grade III 10(538) -

-Glioblastoma, WHO grade IV 3 (179) 13 (711)

Mean Age (SD) 42.5 (13.04) 63.23 (9.72)

Sex (%)

Male 13 (65) 10 (58.8)

Female 7 (35) 7 (41.2)

Median KPS before surgery (range) 100 (70–100) 100 (70–100)

Tumor location (primary lobe involved)

Frontal 14 7

Temporal 3 6

Parietal 3 3

Occipital 1 1

2.2. Samples Collection and Analysis

All patients were submitted to surgery for presumptive low- or high-grade glioma.
Magnetic resonance imaging was performed 24 h before surgery and employed as input
for the Neuronavigation system (Curve, Brainlab. A.G., Munich, Germany). During the
surgical procedure, a small part of the bulk tumor tissue was collected, with accurate
imaging verification of the sampling area. The samples were immediately provided to
the Raman analyst for processing, cleaned with NaCl solution, and placed under a CaF2
window before Raman investigation.

After Raman measurements, the specimens were fixed and provided to the pathol-
ogist, blinded to the RS findings, for pathological and molecular analysis (Figure 1) and
diagnosis according to the 2016 WHO classification of CNS tumor [1]. As a part of the
standard pathological evaluation in our institute, IDH mutational status was assessed
using immunohistochemistry and confirmed through direct DNA sequencing. Based on
the IDH mutational status, each sample was marked as “IDH-mutated” (IDH-MUT) or
“IDH wild-type” (IDH-WT).

2.3. Raman Analysis

A benchtop spectrometer system (model RA800 series-Renishaw plc, Wotton-under-
edge, Gloucestershire, UK) was used to collect the Raman spectra from tissue samples. The
system ran Renishaw’s WiRE 4.0 software and was equipped with a near-infrared (NIR)
laser (785 nm) with a maximum power of 500 mW. The initial spectral region of interest
was 90–1800 cm−1. We used an exposure time ranging from 0.5 to 2.5 s per spectrum. A
range from 1 to 4 spectral accumulations for each acquisition was obtained. The power of
the laser was kept at 100% for all the measurements. Spectra were acquired from randomly
located points across the sample. The line-focus laser minimized potential photodamage or
fluorescence induction.
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Figure 1. (A,B): Preoperative MRI ((A) axial fluid-attenuated inversion recovery image and (B) T1
post-gadolinium axial scan) of a right frontal tumor consistent with Anaplastic Astrocytoma IDH-1
mutant, grade III (WHO 2016 [1]) after histological and molecular analysis. The red spots indicate
the surgical location of the specimen labelled as IDH-MUT. (C,D) Histological evaluation of the
sample analyzed after Raman analysis: panel (C) shows Hematoxylin-and eosin-stained section.
(20× magnification), panel (D) immunohistochemistry section stained using the diagnostic antibody
to IDH1-R132H (20× magnification). (E,F): Preoperative MRI (E, axial fluid attenuated inversion
recovery image and F, T1 post-gadolinium axial scan) of a right temporal tumor consistent with
Anaplastic Astrocytoma IDH-1 wild-type, grade III (WHO 2016). The red spots indicate the surgical
location of the specimen labelled as IDH-WT. (G,H) Panel G shows Hematoxylin-and eosin-stained
section (20× magnification), and panel H shows the immunohistochemistry section stained using the
diagnostic antibody to IDH1-R132H that resulted negative (10× magnification). In both cases, direct
IDH pyrosequencing confirmed the analysis (codon 132 IDH1 and codon 172 IDH2).

An automatic performance quality check was performed on silicon and polystyrene
internal standards before the beginning of each measurement to reduce sample-to-sample
variation. Temperature and humidity conditions, exposure time, laser power, and numbers
of accumulations were iteratively optimized for the sample acquisition. A total of 1157
(mean 54.55; SD 6.28; range 35–66) points was used for spectral acquisition for all the
samples (a single spectrum for each point). A total of 504 (mean 55.29; SD 5.37; range 46–66)
points were analyzed for IDH-WT group. A total of 653 (mean 53.95; SD 7.01; range 35–64)
points were analyzed for IDH-WT group.

We obtained the maximum number of spectra with a higher S2N ratio with a punctual
acquisition mode for each sample. We completed the assessment on each sample within
60 min from the withdrawal to reduce the biological changes and to best simulate an
in-vivo analysis [14].
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2.4. Data Processing and Classification Models
2.4.1. Data Processing

Pre-preprocessing was performed before model classification to remove the signal’s
baseline drifts [15], cosmic rays, and background artefacts [16]. Data pre-processing (Matlab
2019b Mathworks, Natick, MA, USA) followed these steps: (1) truncation of the spectral
range to 400–1750 cm−1; (2) outlier removal using interquartile filtering; (3) Multiple Scatter
Correction (MSC) normalization (4) selection of spectra with Signal-to-Noise (S2N) ratio
≥3.5 around the phenylalanine 1004 cm−1 peak (4) background signal subtraction via
Vancouver Raman Algorithm (VRA) method [17]; (5) Savitzky-Golay Filter (3rd order,
9 point window); signals normalization via global min–max values.

The resulting spectra were respectively 653 for IDH-MUT and 504 for IDH-WT.
Figure 2 reports the normalized median spectra with the 1st and 3rd interquartile bounds
for each group. The frequency of all notable peaks and slopes were outlined on the median
Raman chart and were added to those reported in the pre-existing bibliography [9,10]. We
detected 103 Raman shifts and we used the intensity at each frequency as input features for
the classification algorithms.

Figure 2. Normalized median spectra with IQR for IDH-WT specimens (blue) and IDH-MUT specimens (red). Arrows
mark the most discriminant peaks with a known biological assignment.

2.4.2. Classification Models

Studies focusing on interpretable Machine Learning models are of particular interest
to the field, as they could yield physical insights from automatically highlighted patterns
in the data. The Support Vector Machine with Radial Basis Function kernel (RBF-SVM)
and the eXtreme Gradient Boosted trees (XGB) are two of the most well-known learn-
ing methods due to their theoretical performance guarantees and strong experimental
results [18]; we thus decided to investigate these models [19–21]. We trained each classifier
in Leave-one-patient-out cross-validation (LOPO) to achieve a balanced trade-off between
performance and robustness. A further nested 5-fold cross-validation was performed
during a hyper-parameters optimization. Feature selection was achieved using a statistical
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algorithm (ANOVA–ScikitLearn Fclassif), providing the top 52 features with the highest
discrimination ability among the two datasets.

Parameters for the hyper-parameters grid search were:

- XGB parameters were set to default except for step size shrinkage (eta) (0.01, 0.05, 0.1,
0.2, 0.3); tree method was set to ‘hist’, the learning objective was set to: binary-logistic;
the evaluation metric to: negative log-likelihood (logloss); the maximum depth of a
tree: (5, 8, 10, 12, 15), the minimum loss reduction required to make a further partition
on a leaf node of the tree (gamma): (0.1, 0.2, 0.3, 0.4).

- Grid search parameters for SVM were set default except for the kernel set to Radial
Basis Function (RBF), and the regularization parameter (C):(0.01, 0.1, 1, 10, 100, 1000).

2.5. Statistical Analysis

Statistical analysis was conducted on the top 52 Raman shifts supplied by the al-
gorithm to confirm the statistical difference between the two groups at each shift. A
Mann–Whitney test (two-tailed, α = 0.05) was performed after checking normality using
the Shapiro–Wilk test (software SPSS statistics 25.0; IBM SPSS Inc., Chicago, IL, USA).
Mann–Whitney U values and p-values were calculated for each top Raman shift and re-
ported. Mann–Whitney N value was the same for all the tests calculated: n1 = 504; n2 = 653;
n1 + n2 = N = 1157.

3. Results
3.1. Classification Performances

We obtained 2073 spectra from 38 un-treated specimens: 1133 marked as IDH-MUT
and 940 marked as IDH-WT (Table 1). The resulting spectra obtained after the processing
phases were respectively 653 for IDH-MUT and 504 for IDH-WT. From the 103 Raman
shifts analyzed as input features by XGB and SVM, the cross-validation loop identified
52 shifts with the best ability in the distinction of the two groups. Table 2 shows the most
representative Raman shifts with assigned biological significance.

Table 2. Proposed assignment of the main Raman shifts based on pre-existing bibliography [11,19–28].

Raman Shifts (cm−1) Proposed Assignments

419 Cholesterol

421 Cholesterol

424 Undefined

430 Cholesterol/cholesterol ester

608 Cholesterol

633 Undefined

635 Tyrosine

640 Cysteine, tyrosine

700 Cholesterol

719 Choline in the head group of sphingomyelin and phosphatidylcholine,
phosphatidylethanolamine

720 DNA

743 Adenin, DNA, Heme

808 Undefined

1059 Triglycerides/fatty acids

1064 Lipids [C-O stretch and C-O-C symmetric stretch, C-C stretch of
phospholipids (side chains specifically) and cholesterol]

1174 Proteins

1175 Proteins
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Table 2. Cont.

Raman Shifts (cm−1) Proposed Assignments

1215 Undefined

1225 Amide III band

1245 Amide III band

1250 Amide III, proteins

1255 Lipids

1265 Amide III band

1266 Lipids

1275 Amide III

1300 Phospholipids, fatty acid, cholesterol

1305 Triglycerides/fatty acids

1308 C-N asymmetric stretching in asymmetric aromatic amines

1330 C-H deformation or CH2 bend (proteins)

1337 Lipids and proteins

1342 Nucleic acids

1354 Undefined

1366 Undefined

1372 Nucleic acids

1376 Nucleic acids, DNA

1385 Undefined

1390 Undefined

1397 CH2/CH3 deformation of lipids and proteins

1401 Protein

1412 amino acids: aspartic & glutamic acid

1439 CH2/CH3 deformation of lipids side chains, proteins, amino acids,
cholesterol/cholesterol ester

1440 CH2/CH3 deformation of lipids side chains, proteins, amino acids,
cholesterol/cholesterol ester

1441 Lipids and Proteins

1445 Lipid

1454 Heme groups

1495 Undefined

1502 Undefined

1522 Proteins

1532 Carotenoid

1554 Tryptophan

1705 Undefined

1740 Lipids

The RBF-SVM algorithm presented the best average performance in distinguishing
IDH-MUT from IDH-WT tumor, with an accuracy of 87%, precision 87%, recall 87% and
F1-score 87%. These metrics were calculated on detection outcomes of True Negative (TN),
True Positive (TP), False Negative (FN) and False Positive (FP).
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RBF-SVM correctly classified IDH-MUT spectra with 90% precision, 87% accuracy,
recall 87% and F1-score 87%. RBF-SVM had slightly lower performance in IDH-WT spectral
classification with 84% precision, 87% accuracy, recall 87%, and F1-score 85%. The XGB
showed an average accuracy and precision of 85% (recall and F1-score: 85%). Average
performance metrics from the two classification models are reported in Table 3.

Table 3. Performance metrics for RBF-SVM and XGB.

Performance Metrics RBF-SVM XGB

Accuracy 0.87 0.85

Precision 0.87 0.85

Recall 0.87 0.85

F1-score 0.87 0.85

Receiver Operating Characteristic (ROC) curves were employed to choose algorithms
for their performance on the basis of the True Positive Rate (TPR) and False Positive Rate
(FPR) and to calculate the Area Under the Curve (AUC). The ROC curves at Figure 3
underlined that RFB-SVM had the best performances in the distinction between the two
classes with an AUC of 0.87 compared to 0.85 of XGB.

Figure 3. Receiver operating characteristic curve for SVM and XGB.

3.2. Spectral Analysis

A total of 2073 spectra were acquired from 38 different samples: 1133 spectra from
21 samples labelled as IDH-MUT and 940 spectra from 17 specimens labelled as IDH-WT
(Table 1). The median spectra of the two groups were plotted and analyzed to identify
Raman shifts with possible biological importance. The two algorithms (XGB and SVM)
used the intensity of each shift as input features and tested for their discriminative ability.
Among 103 peaks adopted as input features, the algorithms identified 52 different Raman
peaks with the highest ability in differentiating the two molecular groups. The result-
ing 52 different spectra were examined to identify shifts with possible known biological
significance from the published literature [11,19–28].

The analysis of the Raman spectra assigned to nucleic acids, proteins, and lipids
allowed to identify the different biochemical signature of the IDH-MUT and IDH-WT
biopsies (Figure 2).
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Both groups were characterized by very intense bands around 1300 and 1440 cm−1.
These shifts are linked to protein and lipid, and phospholipids. Further notable peaks are
evident at band from 600 to 720 cm−1, such as peaks at 640 cm−1 (cysteine and tyrosin
related to protein), 700 cm−1 (cholesterol) and 719/720 cm−1 (choline; DNA related to
nucleic acids group). The group of peaks from 419 to 430 cm−1 showed contribution from
cholesterol (419/421 cm−1) and cholesterol ester (430 cm−1).

All the 52 top peaks identified by the algorithms exhibited statistically significant
differences in intensity between the two molecular groups. The prominent regions near
1300 cm−1 (p < 0.001; U = 74,008), 1439 cm−1 (p < 0.001; U = 82,982), 1440 cm−1 (p < 0.001;
U = 83,904) and 1441 cm−1 (p < 0.001; U = 85,905) were reduced in IDH-WT specimens and
are linked to CH2/CH3 deformation of lipids side chains, amino acids, proteins and choles-
terol/cholesterol ester [21]. The group of peaks between 1330 cm−1 and 1441 cm−1 showed
the best graphical separation between the two plotted groups, containing 13 out of 52 (25%)
of the top peaks analyzed. These shifts are more intense in the IDH-MUT specimens and
are related to triglycerides, fatty acids at 1305 cm−1 (p < 0.001; U = 75,188), proteins, lipids
at 1308 cm−1 (p < 0.001; U = 78,136), 1330 cm−1 (p < 0.001; U = 85,725), 1337 cm−1 (p < 0.001;
U = 88,005), 1397 cm−1 (p < 0.001; U = 57,849), 1401 cm−1(p < 0.001; U = 75,188), 1439 cm−1

(p < 0.001; U = 82,982), 1440 cm−1 (p < 0.001; U = 83,904), 1441 cm−1(p < 0.001; U = 85,095),
1445 cm−1 (p < 0.001; U = 90,744) and DNA bases at 1342 cm−1(p < 0.001; U = 90,896),
1372 cm−1(p < 0.001; U = 43,792) and 1376 cm−1 (p < 0.001; U = 42,703). Increased content
of protein, lipids and phospholipids related to band intensities at 1059 cm−1 (p < 0.001;
U = 100,116), 1064 cm−1 (p < 0.001; U = 96,524) and 1174–1175 cm−1 (p < 0.001; U = 91,539
and U = 90,750 respectively) cm−1 was also found in the IDH-MUT group. A lower inten-
sity in shifts related to Amide III was observed in IDH-WT tumors at 1225 cm−1 (p < 0.001;
U = 61,672), 1245 cm−1 (p < 0.001; U = 76,330), 1250 cm−1 (p < 0.001; U = 71,594), 1265 cm−1

(p < 0.001; U = 70,384) and 1275 cm−1 (p < 0.001; U = 66,041). Raman peak related to heme
blood is visible at 1454 cm−1 (p < 0.001; U = 90,818) and is less intense in IDH-WT groups.
Intensities of bands related to cholesterol and cholesterol ester sample’s content are seen
on the left side of the Raman plot in Figure 2 at 419, 421 and 430 cm−1 (more intense in
IDH-MUT tumors, p < 0.001 and U = 110,116, U = 106,872, U = 108,502 respectively).

4. Discussion

In this study we demonstrate that Raman Spectroscopy has the capability to determine
the IDH mutational status of fresh glioma biopsies with good precision and accuracy. This
can be readily achieved next to the operating theatre and in a short period of time without
any additional tissue processing. Our findings added further evidence to the few available
studies on molecular characterization of untreated [10] and treated [9] glioma tissue with
standard Raman Spectroscopy. Adult patients harbouring IDH mutated low-grade glioma
have a better prognosis than IDH-WT tumors after extensive tumor resection [2] and
can therefore dedicate, if required, a longer time in rehabilitation after surgery before
eventual adjuvant therapy. To date, the presence of IDH mutation is one of the strongest
predictors of progression-free survival, overall survival, and response to chemotherapy
and radiotherapy. Conversely, IDH WT tumors are often aggressive diseases that must
be treated with adjuvant treatment soon after removal. For these reasons, it is crucial to
properly balance the extent of resection with postoperative patients’ functional integrity,
considering gliomas’ infiltrative nature and the importance of pursuing resection beyond
imaging-defined limits. For these reasons, a supratotal resection can be a good strategy in
IDH- MUT tumor but would not be the best oncological strategy in the case of IDH-WT
tumors, due to the risk of transient neurological impairment that can hamper adjuvant
treatments. A rapid, non-invasive, intraoperative technique that can provide an accurate
molecular diagnosis is a powerful tool that would allow the surgeon to adapt the surgical
strategy to a personalized approach. In the molecular era, the extent of tumor resection
has to be critically balanced with the prognostic impact of surgery on different glioma
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molecular sub-groups and with the risk of postoperative new-onset neurological morbidity
due to the closer proximity of the tumor boundaries to formal structures.

4.1. Raman Spectroscopy of Fresh Biopsies Next to the Operative Room

We performed the spectral acquisition within 60 min after surgical samples extrac-
tion [14] to avoid any tissue biological or chemical modification. All the analyses were
completed adjacent to the theater, and the spectra were obtained from several points of the
same specimen.

Future in-vivo detection of the IDH mutation needs data from fresh samples to
replicate an online Raman use and to build a well-structured database that can improve
in-vivo Raman analysis. To reach this goal, we decided to use fresh glioma tissue washed
only with a saline solution without further treatment. To date, only few studies with
data from Raman analysis of fresh and untreated tissue are available [10]. An online tool
has been used to characterize molecular tissue changes even in the occurrence of tissue
contaminants (i.e., in un-treated specimens) and with a low number of spectra. Data from
cryosections or treated specimens can contain, as illustrated before [11,29], different types
of artefacts (protein denaturation, cross-linking or loss of lipid) that can interfere with the
discrimination process and undermine accurate tissue analysis. After the Raman analysis,
the tissue samples were sent immediately to permanent immunohistochemical staining
and molecular and pathological analysis that is, to date, the gold standard for diagnosis.

In line with previous results [9,10], this study shows that Raman Spectroscopy can
identify chemical differences between IDH-MUT and IDH-WT fresh samples. The chemical
characteristics of specimens and some distinctive shifts matched with previous authors’
findings, proving that this technique is reliable and exploitable in different surgical scenar-
ios. Two different algorithms allowed us to evaluate the 52 best representative Raman shifts
among the 103 investigated. The RBF-SVM and eXGB showed excellent performances
and allowed to distinguish IDH-MUT tumors from IDH-WT tumors with an average ac-
curacy of 87% and 85%, respectively. These results are consistent with the performances
reported in previous works on frozen samples [9] (ranging from 88 to 89%) and on fresh
tissues (sensitivity and specificity ranging from 91 to 95%). RBF-SVM correctly classi-
fied Raman spectra with a precision of 90% in IDH-MUT tumors and 84% in the case of
IDH-WT tumors.

4.2. Raman Spectroscopy and IDH Mutation

IDH mutation in CNS surgery is specific for glioma and can be pivotal in those cases
where morphological, epidemiological, and radiological factors are confusing. In IDH-1
and IDH-2 mutated tumors, the abnormal production of D-2-HG is related to a profound
alteration in cell metabolism, causing modifications in energetic status, altered response
to oxidative stress, mutations in DNA and histones methylation status. Furthermore,
Koivunen et al. demonstrated that D-2-HG could decrease the production and activity
of HIF-1α, with a critical role in the cellular response to hypoxia and angiogenesis. This
alteration can increase the risk of DNA damage and mutation due to a rise in cellular
oxidative stress [30].

Our work demonstrated that the biochemical changes induced by IDH mutation could
be detected by the mean of RS and exploited in fresh tissue glioma biopsies to distinguish
between IDH-MUT and IDH-WT tumors. This tool, measuring the biological consequence
of both IDH1 and IDH2 mutation, can overcome some limitations of immunohistochemistry
that is sensitive to the common IDH1 mutation. RS could therefore be an essential tool
in the molecular diagnosis of these tumors and minimize the error rate if the surgeon
approaches a lesion that harbors a rare IDH mutation.

Furthermore, reliable and accurate information regarding IDH mutational status
before or during surgery can help target glioma in surgical scenarios with genotype-specific
local treatment against IDH, avoiding systemic toxicity [31].
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4.3. Raman Shifts

From the 103 Raman shifts analyzed, we identified 52 shifts with the highest per-
formance of samples distinction. In particular, these peaks were related to well-known
biological components such as proteins (635, 640, 1174–1175, 1225, 1245, 1250, 1275, 1308,
1330, 1401, 1412, 1522, 1554 cm−1), nucleic acids (720, 743, 1342, 1372 cm−1 and 1376 cm−1),
lipids (419, 421, 430, 608, 700, 719, 1059, 1064, 1255, 1300–1305, 1337, 1440 cm−1), heme
groups within the samples (1454 cm−1) and carotenoid (1532 cm−1). Raman shifts showed
higher intensity in IDH -MUT biopsies than IDH-WT at 419 cm−1 (cholesterol), 635 cm−1

(tyrosin), 1059/1126/1266/1305/1445/1740 cm−1 (triglycerides/fatty acids). The same
data was confirmed by Livermore et al. [10]. Uckermann et al. [9] in their study on frozen
tissue showed, similar to our work, a higher intensity for IDH-MUT glioma in peaks at
640 cm−1 (cysteine), 1174 cm−1 (proteins), 1337 cm−1 (lipids and proteins), suggesting a
changed protein profile between the two molecular sub-groups. Furthermore, peaks at
424, 430, 608, 720, 743, 808, 1215, 1225, 1245, 1255, 1275, 1300, 1308, 1330, 1354, 1366, 1376,
1385, 1390, 1397, 1401, 1412, 1439, 1440, 1454, 1495, 1502, 1532, 1554 and 1705 cm−1 are for
the first time reported in this study compared to the few previous study reporting data
about RS and IDH mutation [9,10] in fresh and frozen samples. In particular, peaks at 430,
608, 720, 743, 1225, 1245, 1255, 1275, 1300, 1308, 1330, 1376, 1397, 1401, 1412, 1439, 1440,
1454, 1532, and 1554 cm−1 belong to the most discriminant peaks with a known biological
assignment as shown in Table 2. In the future, other groups could add these 18 new shifts
with attested biological relevance to increase the power of Raman classification methods
in-vivo or onto un-processed tissue.

4.4. Study Limitation

The small sample size of specimens analyzed and the time requested for each analysis,
higher than some of the previously reported studies [5,10], were primary limitations. The
limited study population hampers a stronger and more powerful data analysis. However,
this study is one of the few clinical series available and represents a valuable contribution
to this methodic. The decrease in the number of spectra before and after the pre-processing
and processing steps indicates the need for particular attention to the raw data acquisition
process to avoid excessive noise.

Although developed in an actual surgical scenario, the nature of this study was not
prospective: the data obtained require validation in a prospective cohort to assess the real
impact of this methodic on the surgical decision workflow and patients’ oncological and
functional outcomes.

We provided preliminary technical and clinical advances and a variegate spectrum
database on untreated tissue to develop further this safe and reliable technology.

5. Conclusions

In conclusion, this study demonstrates the ability of Raman spectroscopy to detect
changes in the biochemical composition of glioma tumors induced by IDH mutation, ex-
vivo onto untreated specimens. The intraoperative detection of IDH mutational status can
be of primary importance, allowing the surgeon to tailor the surgical workflow intraop-
eratively and eventually deliver future in situ therapies. This study adds an important
contribution to the available knowledge on this field and is a critical footstep for obtaining
an accurate in-vivo intraoperative IDH genotyping.
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