496 research outputs found
Solitonic State in Microscopic Dynamic Failures
Onset of permanent deformation in crystalline materials under a sharp
indenter tip is accompanied by nucleation and propagation of defects. By
measuring the spatio-temporal strain field nearthe indenter tip during
indentation tests, we demonstrate that the dynamic strain history at the moment
of a displacement burst carries characteristics of formation and interaction of
local excitations, or solitons. We show that dynamic propagation of multiple
solitons is followed by a short time interval where the propagating fronts can
accelerate suddenly. As a result of such abrupt local accelerations, duration
of the fast-slip phase of a failure event is shortened. Our results show that
formation and annihilation of solitons mediate the microscopic fast weakening
phase, during which extreme acceleration and collision of solitons lead to
non-Newtonian behavior and Lorentz contraction, i.e., shortening of solitons
characteristic length. The results open new horizons for understanding dynamic
material response during failure and, more generally, complexity of earthquake
sources
Interaction of plant amine oxidases with diaminoethers
Polyamines are ubiquitous compounds, which are involved in crucial physiological events
including cell growth and differentiation. The catabolic oxidative degradation of polyamines is
catalyzed by quinoprotein copper-containing amine oxidases (CAOs) and flavoprotein
polyamine oxidases (PAOs). Various synthetic polyamine analogs and polyamine derivatives
have been reported, which represent important tools (substrates or inhibitors) in the study of
catalytic properties of the enzymes. In this work, two related compounds were studied in the
reactions with plant amine oxidases: 1,8-diamino-3,6-dioxaoctane (DADO) and 1,10-bis(2-
pyridinylmethyl)-4,7-dioxa-1,10-diazadecane (BPDD). Based on activity and stoichiometry
assays together with spectrophotometric measurements, DADO can be considered a good
substrate for grass pea, lentil and E. characias CAOs with Km values in the range 10-4 – 10-3 M.
Its oxidative degradation produces the corresponding aminoaldehyde 8-amino-3,6-dioxaoctanal,
which does not undergo spontaneous cyclization (as it is known for the oxidation products of
natural substrates putrescine, cadaverine and spermidine) or polymerization in the reaction
mixture. Conversely, oat PAO does not oxidize DADO and is only weakly inhibited by the
compound (Ki = 1.6 mM towards putrescine). BPDD was found to be a competitive inhibitor of
both CAOs and PAOs with Ki values of 10-4 M. DADO could be suggested as a potential affinity
ligand for CAOs
Further mismeasures of animal contests: a new framework for assessment strategies
Abstract Competition for resources is a ubiquitous feature of life, and a central topic in behavioral ecology. Organisms use assessment strategies to resolve contests, which can be delineated into two broad categories by the information individuals use to make decisions: mutual assessment (MA) or self-assessment (SA). Most research hitherto has worked to bin a species into one of these categories. In this review, we discuss the limitations of this approach and provide solutions. We posit that assessment strategies do not need to be fixed within a species, individuals, or interactions, and that many organisms should adjust their assessment strategy as the environment, opponent, and opportunities for information gathering change. We show that assessment strategies are an individual-level characteristic, can vary within and between contests, and are not mutually exclusive. We argue that MA is the midpoint along a spectrum of self only and opponent only assessment. We discuss the effects of resource distribution, demographics, experience, information transfer, and ontogeny on assessment strategy evolution and behavior. We conclude by providing empirical guidelines and an example with a simulated dataset.</jats:p
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ_(13) with a sensitivity better than 0.01 in the parameter sin^22θ_(13) at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties are smaller than requirements
Recommended from our members
Fungal Community Response to Long-Term Soil Warming With Potential Implications for Soil Carbon Dynamics
The direction and magnitude of climate warming effects on ecosystem processes such as carbon cycling remain uncertain. Soil fungi are central to these processes due to their roles as decomposers of soil organic matter, as mycorrhizal symbionts, and as determinants of plant diversity. Yet despite their importance to ecosystem functioning, we lack a clear understanding of the long-term response of soil fungal communities to warming. Toward this goal, we characterized soil fungal communities in two replicated soil warming experiments at the Harvard Forest (Petersham, Massachusetts, USA) which had experienced 5 degrees C above ambient soil temperatures for 5 and 20 yr at the time of sampling. We assessed fungal diversity and community composition by sequencing the ITS2 region of rDNA using Illumina technology, along with soil C concentrations and chemistry. Three main findings emerged: (1) long-, but not short-term warming resulted in compositional shifts in the soil fungal community, particularly in the saprotrophic and unknown components of the community; (2) soil C concentrations and the total C stored in the organic horizon declined in response to both short- (5 yr) and long-term (20 yr) warming; and (3) following long-term warming, shifts in fungal guild relative abundances were associated with substantial changes in soil organic matter chemistry, particularly the relative abundance of lignin. Taken together, our results suggest that shifts with warming in the relative abundance of fungal functional groups and dominant fungal taxa are related to observed losses in total soil C
New measurement of via neutron capture on hydrogen at Daya Bay
This article reports an improved independent measurement of neutrino mixing
angle at the Daya Bay Reactor Neutrino Experiment. Electron
antineutrinos were identified by inverse -decays with the emitted
neutron captured by hydrogen, yielding a data-set with principally distinct
uncertainties from that with neutrons captured by gadolinium. With the final
two of eight antineutrino detectors installed, this study used 621 days of data
including the previously reported 217-day data set with six detectors. The
dominant statistical uncertainty was reduced by 49%. Intensive studies of the
cosmogenic muon-induced Li and fast neutron backgrounds and the
neutron-capture energy selection efficiency, resulted in a reduction of the
systematic uncertainty by 26%. The deficit in the detected number of
antineutrinos at the far detectors relative to the expected number based on the
near detectors yielded in the
three-neutrino-oscillation framework. The combination of this result with the
gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay
We report a new measurement of electron antineutrino disappearance using the
fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight
antineutrino detectors were installed in the summer of 2012. Including the 404
days of data collected from October 2012 to November 2013 resulted in a total
exposure of 6.910 GW-ton-days, a 3.6 times increase over
our previous results. Improvements in energy calibration limited variations
between detectors to 0.2%. Removal of six Am-C radioactive
calibration sources reduced the background by a factor of two for the detectors
in the experimental hall furthest from the reactors. Direct prediction of the
antineutrino signal in the far detectors based on the measurements in the near
detectors explicitly minimized the dependence of the measurement on models of
reactor antineutrino emission. The uncertainties in our estimates of
and were halved as a result of these
improvements. Analysis of the relative antineutrino rates and energy spectra
between detectors gave and eV in the three-neutrino
framework.Comment: Updated to match final published versio
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
The Daya Bay experiment has observed correlations between reactor core fuel
evolution and changes in the reactor antineutrino flux and energy spectrum.
Four antineutrino detectors in two experimental halls were used to identify 2.2
million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles
for each of six 2.9 GW reactor cores at the Daya Bay and Ling
Ao nuclear power plants. Using detector data spanning effective Pu
fission fractions, , from 0.25 to 0.35, Daya Bay measures an average
IBD yield, , of
cm/fission and a fuel-dependent variation in the IBD yield,
, of cm/fission.
This observation rejects the hypothesis of a constant antineutrino flux as a
function of the Pu fission fraction at 10 standard deviations. The
variation in IBD yield was found to be energy-dependent, rejecting the
hypothesis of a constant antineutrino energy spectrum at 5.1 standard
deviations. While measurements of the evolution in the IBD spectrum show
general agreement with predictions from recent reactor models, the measured
evolution in total IBD yield disagrees with recent predictions at 3.1.
This discrepancy indicates that an overall deficit in measured flux with
respect to predictions does not result from equal fractional deficits from the
primary fission isotopes U, Pu, U, and Pu.
Based on measured IBD yield variations, yields of and cm/fission have been determined for the two
dominant fission parent isotopes U and Pu. A 7.8% discrepancy
between the observed and predicted U yield suggests that this isotope
may be the primary contributor to the reactor antineutrino anomaly.Comment: 7 pages, 5 figure
- …