19,193 research outputs found

    Role of Landau-Rabi quantization of electron motion on the crust of magnetars within the nuclear energy density functional theory

    Full text link
    Magnetic fields of order 101510^{15} G have been measured at the surface of some neutron stars, and much stronger magnetic fields are expected to be present in the solid region beneath the surface. The effects of the magnetic field on the equation of state and on the composition of the crust due to Landau-Rabi quantization of electron motion are studied. Both the outer and inner crustal regions are described in a unified and consistent way within the nuclear-energy density functional theory.Comment: 23 pages, 11 figure

    The "zeroth law" of turbulence: Isotropic turbulence simulations revisited

    Full text link
    The dimensionless kinetic energy dissipation rate C_epsilon is estimated from numerical simulations of statistically stationary isotropic box turbulence that is slightly compressible. The Taylor microscale Reynolds number Re_lambda range is 20 < Re_lambda < 220 and the statistical stationarity is achieved with a random phase forcing method. The strong Re_lambda dependence of C_epsilon abates when Re_lambda approx. 100 after which C_epsilon slowly approaches approx 0.5 a value slightly different to previously reported simulations but in good agreement with experimental results. If C_epsilon is estimated at a specific time step from the time series of the quantities involved it is necessary to account for the time lag between energy injection and energy dissipation. Also, the resulting value can differ from the ensemble averaged value by up to +-30%. This may explain the spread in results from previously published estimates of C_epsilon.Comment: 7 pages, 7 figures. Submitted to Phys. Rev.

    Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    Get PDF
    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs

    Decision Making: The Neuroethological Turn

    Get PDF
    Neuroeconomics applies models from economics and psychology to inform neurobiological studies of choice. This approach has revealed neural signatures of concepts like value, risk, and ambiguity, which are known to influence decision making. Such observations have led theorists to hypothesize a single, unified decision process that mediates choice behavior via a common neural currency for outcomes like food, money, or social praise. In parallel, recent neuroethological studies of decision making have focused on natural behaviors like foraging, mate choice, and social interactions. These decisions strongly impact evolutionary fitness and thus are likely to have played a key role in shaping the neural circuits that mediate decision making. This approach has revealed a suite of computational motifs that appear to be shared across a wide variety of organisms. We argue that the existence of deep homologies in the neural circuits mediating choice may have profound implications for understanding human decision making in health and disease

    Diffusion, peer pressure and tailed distributions

    Full text link
    We present a general, physically motivated non-linear and non-local advection equation in which the diffusion of interacting random walkers competes with a local drift arising from a kind of peer pressure. We show, using a mapping to an integrable dynamical system, that on varying a parameter, the steady state behaviour undergoes a transition from the standard diffusive behavior to a localized stationary state characterized by a tailed distribution. Finally, we show that recent empirical laws on economic growth can be explained as a collective phenomenon due to peer pressure interaction.Comment: RevTex: 4 pages + 3 eps-figures. Minor Revision and figure 3 replaced. To appear in Phys. Rev. Letter

    Intracule functional models. IV. Basis set effects

    No full text
    We have calculated position and dot intracules for a series of atomic and molecular systems, starting from an unrestricted Hartree-Fock wave function, expanded using the STO-3G, 6-31G, 6-311G, 6-311++G, 6-311++G(d,p), 6-311++G(3d,3p), and 6-311++G(3df,3pd) basis sets as well as the nonpolarized part of Dunning's cc-pV5Z basis. We find that the basis set effects on the intracules are small and that correlation energies from the dot intracule ansatz are remarkably insensitive to the basis set quality. Mean absolute errors in correlation energies across the G1 data set agree to within 2 mE(h) for all basis sets tested.P.M.W.G. thanks the APAC Merit Allocation Scheme for a generous grant of supercomputer resources and the Australian Research Council Grant Nos. DP0664466 and DP0771978 for funding
    corecore