17,007 research outputs found

    The Generalized Spectral Kurtosis Estimator

    Full text link
    Due to its conceptual simplicity and its proven effectiveness in real-time detection and removal of radio frequency interference (RFI) from radio astronomy data, the Spectral Kurtosis (SK) estimator is likely to become a standard tool of a new generation of radio telescopes. However, the SK estimator in its original form must be developed from instantaneous power spectral density (PSD) estimates, and hence cannot be employed as an RFI excision tool downstream of the data pipeline in existing instruments where any time averaging is performed. In this letter, we develop a generalized estimator with wider applicability for both instantaneous and averaged spectral data, which extends its practical use to a much larger pool of radio instruments.Comment: 5 pages, 2 figures, MNRAS Letters accepte

    Surface spin flip probability of mesoscopic Ag wires

    Full text link
    Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering.Comment: 5 pages, 4 figure

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and −0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page

    Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime

    Full text link
    We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectification) with respect to the direction of vortex flow is evidence that vortex jamming strongly moderates vortex dynamics in mesoscopic geometries. The findings can be applied to superconducting devices exploiting vortex dynamics and vortex manipulation, including superconducting wires with engineered pinning centers.Comment: 5 pages, 3 figure

    X-type and Y-type junction stability in domain wall networks

    Full text link
    We develop an analytic formalism that allows one to quantify the stability properties of X-type and Y-type junctions in domain wall networks in two dimensions. A similar approach might be applicable to more general defect systems involving junctions that appear in a range of physical situations, for example, in the context of F- and D-type strings in string theory. We apply this formalism to a particular field theory, Carter's pentavac model, where the strength of the symmetry breaking is governed by the parameter ∣ϵ∣<1|\epsilon|< 1. We find that for low values of the symmetry breaking parameter X-type junctions will be stable, whereas for higher values an X-type junction will separate into two Y-type junctions. The critical angle separating the two regimes is given by \alpha_c = 293^{\circ}\sqrt{|\epsilon|} and this is confirmed using simple numerical experiments. We go on to simulate the pentavac model from random initial conditions and we find that the dominant junction is of \ytype for |\epsilon| \geq 0.02 and is of \xtype for |\epsilon| \leq 0.02.Wealsofindthatforsmall. We also find that for small \epsilontheevolutionofthenumberofdomainwalls the evolution of the number of domain walls \qsubrm{N}{dw}inMinkowskispacedoesnotfollowthestandard in Minkowski space does not follow the standard \propto t^{-1}scalinglawwiththedeviationfromthestandardlorebeingmorepronouncedas scaling law with the deviation from the standard lore being more pronounced as \epsilonisdecreased.Thepresenceofdissipationappearstorestorethe is decreased. The presence of dissipation appears to restore the t^{-1}$ lore.Comment: 24 pages, 13 figures; typos fixe
    • …
    corecore