485 research outputs found
Prolactin delays hair regrowth in mice
Mammalian hair growth is cyclic, with hair-producing follicles alternating between active (anagen) and quiescent (telogen) phases. The timing of hair cycles is advanced in prolactin receptor (PRLR) knockout mice, suggesting that prolactin has a role in regulating follicle cycling. In this study, the relationship between profiles of circulating prolactin and the first post-natal hair growth cycle was examined in female Balb/c mice. Prolactin was found to increase at 3 weeks of age, prior to the onset of anagen 1 week later. Expression of PRLR mRNA in skin increased fourfold during early anagen. This was followed by upregulation of prolactin mRNA, also expressed in the skin. Pharmacological suppression of pituitary prolactin advanced dorsal hair growth by 3.5 days. Normal hair cycling was restored by replacement with exogenous prolactin for 3 days. Increasing the duration of prolactin treatment further retarded entry into anagen. However, prolactin treatments, which began after follicles had entered anagen at 26 days of age, did not alter the subsequent progression of the hair cycle. Skin from PRLR-deficient mice grafted onto endocrine-normal hosts underwent more rapid hair cycling than comparable wild-type grafts, with reduced duration of the telogen phase. These experiments demonstrate that prolactin regulates the timing of hair growth cycles in mice via a direct effect on the skin, rather than solely via the modulation of other endocrine factors
Momentum state engineering and control in Bose-Einstein condensates
We demonstrate theoretically the use of genetic learning algorithms to
coherently control the dynamics of a Bose-Einstein condensate. We consider
specifically the situation of a condensate in an optical lattice formed by two
counterpropagating laser beams. The frequency detuning between the lasers acts
as a control parameter that can be used to precisely manipulate the condensate
even in the presence of a significant mean-field energy. We illustrate this
procedure in the coherent acceleration of a condensate and in the preparation
of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX,
submitted to Phys. Rev. A, incl. small modifications, some references adde
Optimum electrode configurations for fast ion separation in microfabricated surface ion traps
For many quantum information implementations with trapped ions, effective
shuttling operations are important. Here we discuss the efficient separation
and recombination of ions in surface ion trap geometries. The maximum speed of
separation and recombination of trapped ions for adiabatic shuttling operations
depends on the secular frequencies the trapped ion experiences in the process.
Higher secular frequencies during the transportation processes can be achieved
by optimising trap geometries. We show how two different arrangements of
segmented static potential electrodes in surface ion traps can be optimised for
fast ion separation or recombination processes. We also solve the equations of
motion for the ion dynamics during the separation process and illustrate
important considerations that need to be taken into account to make the process
adiabatic
Operation of an optoelectronic crossbar switch containing a terabit-per-second free-space optical interconnect
The experimental operation of a terabit-per-second scale optoelectronic connection to a silicon very-large-scale-integrated circuit is described. A demonstrator system, in the form of an optoelectronic crossbar switch, has been constructed as a technology test bed. The assembly and testing of the components making up the system, including a flip-chipped InGaAs-GaAs optical interface chip, are reported. Using optical inputs to the electronic switching chip, single-channel routing of data through the system at the design rate of 250 Mb/s (without internal fan-out) was achieved. With 4000 optical inputs, this corresponds to a potential aggregate data input of a terabit per second into the single 14.6 /spl times/ 15.6 mm CMOS chip. In addition 50-Mb/s data rates were switched utilizing the full internal optical fan-out included in the system to complete the required connectivity. This simultaneous input of data across the chip corresponds to an aggregate data input of 0.2 Tb/s. The experimental system also utilized optical distribution of clock signals across the CMOS chip
A POD reduced order model for resolving angular direction in neutron/photon transport problems
publisher: Elsevier articletitle: A POD reduced order model for resolving angular direction in neutron/photon transport problems journaltitle: Journal of Computational Physics articlelink: http://dx.doi.org/10.1016/j.jcp.2015.04.043 content_type: article copyright: Copyright © 2015 Elsevier Inc. All rights reserved.publisher: Elsevier articletitle: A POD reduced order model for resolving angular direction in neutron/photon transport problems journaltitle: Journal of Computational Physics articlelink: http://dx.doi.org/10.1016/j.jcp.2015.04.043 content_type: article copyright: Copyright © 2015 Elsevier Inc. All rights reserved.publisher: Elsevier articletitle: A POD reduced order model for resolving angular direction in neutron/photon transport problems journaltitle: Journal of Computational Physics articlelink: http://dx.doi.org/10.1016/j.jcp.2015.04.043 content_type: article copyright: Copyright © 2015 Elsevier Inc. All rights reserved
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Modeling infectious disease dynamics in the complex landscape of global health.
Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health
Brane inflation revisited after WMAP five-year results
In this paper, we revisit brane inflation models with the WMAP five-year
results. The WMAP five-year data favor a red-tilted power spectrum of
primordial fluctuations at the level of two standard deviations, which is the
same as the WMAP three-year result qualitatively, but quantitatively the
spectral index is slightly greater than the three-year value. This result can
bring impacts on brane inflation models. According to the WMAP five-year data,
we find that the KKLMMT model can survive at the level of one standard
deviation, and the fine-tuning of the parameter can be alleviated to a
certain extent at the level of two standard deviations.Comment: 23 pages, 11 figure
- …