302 research outputs found

    Enhancing Social Connectedness in Anxiety and Depression Through Amplification of Positivity: Preliminary Treatment Outcomes and Process of Change.

    Get PDF
    BackgroundAnxiety and depressive disorders are often characterized by perceived social disconnection, yet evidence-based treatments produce only modest improvements in this domain. The well-established link between positive affect (PA) and social connectedness suggests that directly targeting PA in treatment may be valuable.MethodA secondary analysis of a waitlist-controlled trial (N=29) was conducted to evaluate treatment response and process of change in social connectedness within a 10-session positive activity intervention protocol-Amplification of Positivity (AMP)-designed to increase PA in individuals seeking treatment for anxiety or depression (ClinicalTrials.gov Identifier: NCT02330627). Perceived social connectedness and PA/negative affect (NA) were assessed throughout treatment. Time-lagged multilevel mediation models examined the process of change in affect and connectedness throughout treatment.ResultsThe AMP group displayed significantly larger improvements in social connectedness from pre- to post-treatment compared to waitlist; improvements were maintained through 6-month follow-up. Within the AMP group, increases in PA and decreases in NA both uniquely predicted subsequent increases in connectedness throughout treatment. However, experiencing heightened NA throughout treatment attenuated the effect of changes in PA on connectedness. Improvements in connectedness predicted subsequent increases in PA, but not changes in NA.ConclusionsThese preliminary findings suggest that positive activity interventions may be valuable for enhancing social connectedness in individuals with clinically impairing anxiety or depression, possibly through both increasing positive emotions and decreasing negative emotions

    Model dependence of single-energy fits to pion photoproduction data

    Full text link
    Model dependence of multipole analysis has been explored through energy-dependent and single-energy fits to pion photoproduction data. The MAID energy-dependent solution has been used as input for an event generator producing realistic pseudo data. These were fitted using the SAID parametrization approach to determine single-energy and energy-dependent solutions over a range of lab photon energies from 200 to 1200 MeV. The resulting solutions were found to be consistent with the input amplitudes from MAID. Fits with a χ\chi-squared per datum of unity or less were generally achieved. We discuss energy regions where consistent results are expected, and explore the sensitivity of fits to the number of included single- and double-polarization observables. The influence of Watson's theorem is examined in detail.Comment: 12 pages, 8 figure

    Listening to the voices of women suffering perinatal psychological distress

    Get PDF
    This article suggests that transactional analysis can be an effective treatment approach for women suffering from mental health conditions and the emotional and life disturbances that may occur during the perinatal period. It offers a brief introduction to perinatal psychological distress followed by a description of the use of transactional analysis psychotherapy for this condition. The article outlines a new model for a research project that aims to ascertain women’s views on the helpfulness of the treatment and to gain a better understanding of the stigma often associated with perinatal mental health issues. The author argues for the necessity of qualitative research to assess the efficacy of transactional-analysis-based treatment and to increase our knowledge about the change process in transactional analysis psychotherapy with this client population as well as to inform future transactional analysis treatment protocols

    Energy confinement and magnetic field generation in the SSPX spheromak

    Get PDF
    The Sustained Spheromak Physics Experiment (SSPX) [E.B. Hooper, et. al., Nuclear Fusion, Vol. 39, No. 7] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (T{sub e}) recorded for a spheromak with T{sub e} > 500 eV, toroidal magnetic field {approx}1 T and toroidal current ({approx}1 MA) [R.D. Wood, D.N. Hill, H.S. McLean, E.B. Hooper, B.F. Hudson, J.M. Moller, 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', submitted to Physical Review Letters]. Extending the sustainment phase to > 8 ms extends the period of low magnetic fluctuations (< 1 %) by 50%. The NIMROD 3-D resistive MHD code [C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger and D.D. Schnack, The NIMROD Team, Phys. Plasmas 10, 1727 (2003)] reproduces the observed flux amplification {Psi}{sub pol}/{Psi}{sub gun}. Successive gun pulses are demonstrated to maintain the magnetic field in a quasi-steady state against resistive decay. Initial measurements of neutral particle flux in multi-pulse operation show charge-exchange power loss < 1% of gun input power and dominantly collisional majority ion heating. The evolution of electron temperature shows a distinct and robust feature of spheromak formation: a hollow-to-peaked T{sub e}(r) associated with q {approx} 1/2
    • …
    corecore