46 research outputs found

    Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation

    Get PDF
    Rationale: Despite the critical role attributed to phosphorylated extracellular signal regulated kinase (pERK1/2) in the nucleus accumbens (Acb) in the actions of addictive drugs, the effects of morphine on ERK1/2 phosphorylation in this area are still controversial. Objectives: In order to investigate further this issue, we studied (1) the ability of morphine to affect ERK1/2 phosphorylation in the shell (AcbSh) and core (AcbC) of Sprague-Dawley and Wistar rats and of CD-1 and C57BL/6J mice and (2) the role of dopamine D1 and μ-opioid receptors in Sprague-Dawley rats and CD-1 mice. Methods: The pERK1/2 expression was assessed by immunohistochemistry. Results: In rats, morphine decreased AcbSh and AcbC pERK1/2 expression, whereas in mice, increased it preferentially in the AcbSh compared with the AcbC. Systemic SCH 39166 decreased pERK1/2 expression on its own in the AcbSh and AcbC of Sprague-Dawley rats and CD-1 mice; furthermore, in rats, SCH 39166 disclosed the ability of morphine to stimulate pERK1/2 expression. Systemic (rats and mice) and intra-Acb (rats) naltrexone prevented both decreases, in rats, and increases, in mice. Conclusions: These findings confirm the differential effects of morphine in rats and mice Acb and that D1 receptors exert a facilitatory role on ERK1/2 phosphorylation; furthermore, they indicate that, in rats, removal of the D1-dependent pERK1/2 expression discloses the stimulatory influence of morphine on ERK1/2 phosphorylation and that the morphine’s ability to decrease pERK1/2 expression is mediated by Acb μ-opioid receptors. Future experiments may disentangle the psychopharmacological significance of the effects of morphine on pERK1/2 in the Acb

    New perspective for an old drug: Can naloxone be considered an antioxidant agent?

    Get PDF
    Background: Experimental evidence indicates that Naloxone (NLX) holds antioxidant properties. The present study aims at verifying the hypothesis that NLX could prevent oxidative stress induced by hydrogen peroxide (H2O2) in PC12 cells.Methods: To investigate the antioxidant effect of NLX, initially, we performed electrochemical experiments by means of platinum-based sensors in a cell-free system. Subsequently, NLX was tested in PC12 cells on H2O2induced overproduction of intracellular levels of reactive-oxygen-species (ROS), apoptosis, modification of cells' cycle distribution and damage of cells' plasma membrane.Results: This study reveals that NLX counteracts intracellular ROS production, reduces H2O2-induced apoptosis levels, and prevents the oxidative damage-dependent increases of the percentage of cells in G2/M phase. Likewise, NLX protects PC12 cells from H2O2- induced oxidative damage, by preventing the lactate dehydrogenase (LDH) release. Moreover, electrochemical experiments confirmed the antioxidant properties of NLX.Conclusion: Overall, these findings provide a starting point for studying further the protective effects of NLX on oxidative stress
    corecore