12,563 research outputs found
Solar sailing - mission opportunities and innovative technology demonstration
Solar sailing is a unique and elegant form of propulsion that transcends reliance on reaction mass. Rather than carrying propellant, solar sails acquire momentum from photons, the quantum packets of energy from which sunlight is composed. In addition, since solar sails are not limited by reaction mass, they can provide continual acceleration, limited only by the lifetime of the sail film in the space environment. Therefore, solar sails can expand the envelope of possible missions, enabling new high-energy mission concepts that are essentially impossible with conventional reaction propulsion, and enhancing current mission concepts by lowering launch mass and reducing trip times
Baryonic Signatures in Large-Scale Structure
We investigate the consequences of a non-negligible baryon fraction for
models of structure formation in Cold Dark Matter dominated cosmologies,
emphasizing in particular the existence of oscillations in the present-day
matter power spectrum. These oscillations are the remnants of acoustic
oscillations in the photon-baryon fluid before last scattering. For acceptable
values of the cosmological and baryon densities, the oscillations modulate the
power by up to 10%, with a `period' in spatial wavenumber which is close to
Delta k approximately 0.05/ Mpc. We study the effects of nonlinear evolution on
these features, and show that they are erased for k > 0.2 h/ Mpc. At larger
scales, the features evolve as expected from second-order perturbation theory:
the visibility of the oscillations is affected only weakly by nonlinear
evolution. No realistic CDM parameter combination is able to account for the
claimed feature near k = 0.1 h/ Mpc in the APM power spectrum, or the excess
power at 100 Mpc/h wavelengths quoted by several recent surveys. Thus baryonic
oscillations are not predicted to dominate existing measurements of clustering.
We examine several effects which may mask the features which are predicted, and
conclude that future galaxy surveys may be able to detect the oscillatory
features in the power spectrum provided baryons comprise more than 15% of the
total density, but that it will be a technically challenging achievement.Comment: 16 pages, 13 Figures, to be published in MNRA
Old Galaxies at High Redshift and the Cosmological Constant
In a recent striking discovery, Dunlop {\bf \it et al} observed a galaxy at
redshift z=1.55 with an estimated age of 3.5 Gyr. This is incompatible with age
estimates for a flat matter dominated universe unless the Hubble constant is
less than . While both an open universe, and a universe
with a cosmological constant alleviate this problem, I argue here that this
result favors a non-zero cosmological constant, especially when considered in
light of other cosmological constraints. In the first place, for the favored
range of matter densities, this constraint is more stringent than the globular
cluster age constraint, which already favors a non-zero cosmological constant.
Moreover, the age-redshift relation for redshifts of order unity implies that
the ratio between the age associated with redshift 1.55 and the present age is
also generally larger for a cosmological constant dominated universe than for
an open universe. In addition, structure formation is generally suppressed in
low density cosmologies, arguing against early galaxy formation. The additional
constraints imposed by the new observation on the parameter space of vs
(where ) are derived for both
cosmologies. For a cosmological constant dominated universe this constraint is
consistent with the range allowed by other cosmological constraints, which also
favor a non-zero value.Comment: latex, 10 pages, including two embedded postscript figure
Is space really expanding? A counterexample
In all Friedman models, the cosmological redshift is widely interpreted as a
consequence of the general-relativistic phenomenon of EXPANSION OF SPACE. Other
commonly believed consequences of this phenomenon are superluminal recession
velocities of distant galaxies and the distance to the particle horizon greater
than c*t (where t is the age of the Universe), in apparent conflict with
special relativity. Here, we study a particular Friedman model: empty universe.
This model exhibits both cosmological redshift, superluminal velocities and
infinite distance to the horizon. However, we show that the cosmological
redshift is there simply a relativistic Doppler shift. Moreover, apparently
superluminal velocities and `acausal' distance to the horizon are in fact a
direct consequence of special-relativistic phenomenon of time dilation, as well
as of the adopted definition of distance in cosmology. There is no conflict
with special relativity, whatsoever. In particular, INERTIAL recession
velocities are subluminal. Since in the real Universe, sufficiently distant
galaxies recede with relativistic velocities, these special-relativistic
effects must be at least partly responsible for the cosmological redshift and
the aforementioned `superluminalities', commonly attributed to the expansion of
space. Let us finish with a question resembling a Buddhism-Zen `koan': in an
empty universe, what is expanding?Comment: 12 pages, no figures; added Appendix with a calculation of the
cosmological redshift in `private space
Radio Galaxy Clustering at z~0.3
Radio galaxies are uniquely useful as probes of large-scale structure as
their uniform identification with giant elliptical galaxies out to high
redshift means that the evolution of their bias factor can be predicted. As the
initial stage in a project to study large-scale structure with radio galaxies
we have performed a small redshift survey, selecting 29 radio galaxies in the
range 0.19<z<0.45 from a contiguous 40 square degree area of sky. We detect
significant clustering within this sample. The amplitude of the two-point
correlation function we measure is consistent with no evolution from the local
(z<0.1) value. This is as expected in a model in which radio galaxy hosts form
at high redshift and thereafter obey a continuity equation, although the
signal:noise of the detection is too low to rule out other models. Larger
surveys out to z~1 should reveal the structures of superclusters at
intermediate redshifts and strongly constrain models for the evolution of
large-scale structure.Comment: 7 pages, 3 figures, accepted by ApJ Letter
The Evolution of Radio Galaxies at Intermediate Redshift
We describe a new estimate of the radio galaxy 1.4 GHz luminosity function
and its evolution at intermediate redshifts (z~0.4). Photometric redshifts and
color selection have been used to select Bj<23.5 early-type galaxies from the
Panoramic Deep Fields, a multicolor survey of two 25 sq deg fields.
Approximately 230 radio galaxies have then been selected by matching early-type
galaxies with NVSS radio sources brighter than 5 mJy. Estimates of the 1.4 GHz
luminosity function of radio galaxies measure significant evolution over the
observed redshift range. For an Omega_M=1 cosmology the evolution of the radio
power is consistent with luminosity evolution where P(z)=P(0)(1+z)^{k_L} and
3<k_L<5. The observed evolution is similar to that observed for UVX and X-ray
selected AGN and is consistent with the same physical process being responsible
for the optical and radio luminosity evolution of AGN.Comment: 26 pages, 9 Figures, Accepted for Publication in A
- …
