9 research outputs found

    A Jacobian module for disentanglements and applications to Mond's conjecture

    Get PDF
    Given a germ of holomorphic map ff from Cn\mathbb C^n to Cn+1\mathbb C^{n+1}, we define a module M(f)M(f) whose dimension over C\mathbb C is an upper bound for the A\mathscr A-codimension of ff, with equality if ff is weighted homogeneous. We also define a relative version My(F)M_y(F) of the module, for unfoldings FF of ff. The main result is that if (n,n+1)(n,n+1) are nice dimensions, then the dimension of M(f)M(f) over C\mathbb C is an upper bound of the image Milnor number of ff, with equality if and only if the relative module My(F)M_y(F) is Cohen-Macaulay for some stable unfolding FF. In particular, if My(F)M_y(F) is Cohen-Macaulay, then we have Mond's conjecture for ff. Furthermore, if ff is quasi-homogeneous, then Mond's conjecture for ff is equivalent to the fact that My(F)M_y(F) is Cohen-Macaulay. Finally, we observe that to prove Mond's conjecture, it suffices to prove it in a suitable family of examples.Comment: 19 page

    A jacobian module for disentanglements and applications to Mond's conjecture

    Get PDF
    Let f:(Cn,S)(Cn+1,0)f:(\mathbb C^n,S)\to (\mathbb C^{n+1},0) be a germ whose image is given by g=0g=0. We define an On+1\mathcal O_{n+1}-module M(g)M(g) with the property that Ae\mathscr A_e-codim(f)dimCM(g)\operatorname{codim}(f)\le \dim_\mathbb C M(g), with equality if ff is weighted homogeneous. We also define a relative version My(G)M_y(G) for unfoldings FF, in such a way that My(G)M_y(G) specialises to M(g)M(g) when GG specialises to gg. The main result is that if (n,n+1)(n,n+1) are nice dimensions, then dimCM(g)μI(f)\dim_\mathbb C M(g)\ge \mu_I(f), with equality if and only if My(G)M_y(G) is Cohen-Macaulay, for some stable unfolding FF. Here, μI(f)\mu_I(f) denotes the image Milnor number of ff, so that if My(G)M_y(G) is Cohen-Macaulay, then Mond's conjecture holds for ff; furthermore, if ff is weighted homogeneous, Mond's conjecture for ff is equivalent to the fact that My(G)M_y(G) is Cohen-Macaulay. Finally, we observe that to prove Mond's conjecture, it is enough to prove it in a suitable family of examples.Bolsa Pesquisador Visitante Especial (PVE) - Ciˆencias sem Fronteiras/CNPq Project number: 401947/2013-0 DGICYT Grant MTM2015–64013–P CNPq Project number 401947/2013-

    A jacobian module for disentanglements and applications to Mond's conjecture

    No full text
    Let f:(Cn,S)(Cn+1,0)f:(\mathbb C^n,S)\to (\mathbb C^{n+1},0) be a germ whose image is given by g=0g=0. We define an On+1\mathcal O_{n+1}-module M(g)M(g) with the property that Ae\mathscr A_e-codim(f)dimCM(g)\operatorname{codim}(f)\le \dim_\mathbb C M(g), with equality if ff is weighted homogeneous. We also define a relative version My(G)M_y(G) for unfoldings FF, in such a way that My(G)M_y(G) specialises to M(g)M(g) when GG specialises to gg. The main result is that if (n,n+1)(n,n+1) are nice dimensions, then dimCM(g)μI(f)\dim_\mathbb C M(g)\ge \mu_I(f), with equality if and only if My(G)M_y(G) is Cohen-Macaulay, for some stable unfolding FF. Here, μI(f)\mu_I(f) denotes the image Milnor number of ff, so that if My(G)M_y(G) is Cohen-Macaulay, then Mond's conjecture holds for ff; furthermore, if ff is weighted homogeneous, Mond's conjecture for ff is equivalent to the fact that My(G)M_y(G) is Cohen-Macaulay. Finally, we observe that to prove Mond's conjecture, it is enough to prove it in a suitable family of examples.Bolsa Pesquisador Visitante Especial (PVE) - Ciˆencias sem Fronteiras/CNPq Project number: 401947/2013-0 DGICYT Grant MTM2015–64013–P CNPq Project number 401947/2013-

    Double point curves for corank 2 map germs from <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi mathvariant="double-struck">C</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> to <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi mathvariant="double-struck">C</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math>

    No full text
    corecore