3 research outputs found

    Boosting the sensitivity of in vitro b-lactam allergy diagnostic tests

    Full text link
    [EN] The synthesis of structurally new haptens and the development of suitable antigens are essential for boosting the sensitivity of drug allergy diagnostic testing. Unprecedented structural antigens for benzylpenicillin and amoxicillin are characterised and evaluated in a cohort of 70 subjects with a turnkey solution based on consumer electronics.This work was funded by the H2020 program (project COBIOPHAD, grant agreement No. 688448), an initiative of the Photonics Public Private Partnership; Agencia Estatal de Investigacion (CTQ2016-75749-R, FEDER) and program UPV-La FE 2019 (PI05 VALBIOAL). E. P. M. holds a FPU doctoral fellowship from Ministerio de Educación, Cultura y Deporte.Peña-Mendizábal, E.; Morais, S.; Maquieira Catala, Á. (2020). Boosting the sensitivity of in vitro b-lactam allergy diagnostic tests. Chemical Communications. 56(80):11973-11976. https://doi.org/10.1039/D0CC04903DS11973119765680Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742-750. doi:10.1016/s1473-3099(14)70780-7Khan, D. A., & Solensky, R. (2010). Drug allergy. Journal of Allergy and Clinical Immunology, 125(2), S126-S137.e1. doi:10.1016/j.jaci.2009.10.028Blanca, M., Romano, A., Torres, M. J., Férnandez, J., Mayorga, C., Rodriguez, J., … Atanasković-Marković, M. (2009). Update on the evaluation of hypersensitivity reactions to betalactams. Allergy, 64(2), 183-193. doi:10.1111/j.1398-9995.2008.01924.xWorld Health Organization, WHO Report on Surveillance of Antibiotic Consumption: 2016–2018 Early implementation, Geneva, 2018Blanca-Lopez, N., Jimenez-Rodriguez, T. W., Somoza, M. L., Gomez, E., Al-Ahmad, M., Perez-Sala, D., & Blanca, M. (2019). Allergic reactions to penicillins and cephalosporins: diagnosis, assessment of cross-reactivity and management. Expert Review of Clinical Immunology, 15(7), 707-721. doi:10.1080/1744666x.2019.1619548Chang, C., Mahmood, M. M., Teuber, S. S., & Gershwin, M. E. (2011). Overview of Penicillin Allergy. Clinical Reviews in Allergy & Immunology, 43(1-2), 84-97. doi:10.1007/s12016-011-8279-6Baldo, B. A., & Pham, N. H. (2002). Immunoglobulin E binding determinants on β-lactam drugs. Current Opinion in Allergy and Clinical Immunology, 2(4), 297-300. doi:10.1097/00130832-200208000-00002Weltzien, H. U., & Padovan, E. (1998). Molecular Features of Penicillin Allergy. Journal of Investigative Dermatology, 110(3), 203-206. doi:10.1046/j.1523-1747.1998.00122.xBALDO. (1999). Penicillins and cephalosporins as allergens - structural aspects of recognition and cross-reactions. Clinical & Experimental Allergy, 29(6), 744-749. doi:10.1046/j.1365-2222.1999.00575.xZhao, Z., Baldo, B. A., & Rimmer, J. (2002). β-Lactam allergenic determinants: fine structural recognition of a cross-reacting determinant on benzylpenicillin and cephalothin. Clinical & Experimental Allergy, 32(11), 1644-1650. doi:10.1046/j.1365-2222.2002.01492.xZhao, Z., Baldo, B. A., Baumgart, K. W., & Mallon, D. F. J. (2001). Fine structural recognition specificities of IgE antibodies distinguishing amoxicilloyl and amoxicillanyl determinants in allergic subjects. Journal of Molecular Recognition, 14(5), 300-307. doi:10.1002/jmr.541Peng, J., Kong, D., Liu, L., Song, S., Kuang, H., & Xu, C. (2015). Determination of quinoxaline antibiotics in fish feed by enzyme-linked immunosorbent assay using a monoclonal antibody. Analytical Methods, 7(12), 5204-5209. doi:10.1039/c5ay00953gPeng, D., Ye, S., Wang, Y., Chen, D., Tao, Y., Huang, L., … Yuan, Z. (2011). Development and Validation of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Screening of Tylosin and Tilmicosin in Muscle, Liver, Milk, Honey and Eggs. Journal of Agricultural and Food Chemistry, 60(1), 44-51. doi:10.1021/jf2037449Brun, E. M., Garcés-García, M., Puchades, R., & Maquieira, Á. (2004). Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure. Journal of Immunological Methods, 295(1-2), 21-35. doi:10.1016/j.jim.2004.08.014Kim, Y. J., Cho, Y. A., Lee, H.-S., Lee, Y. T., Gee, S. J., & Hammock, B. D. (2003). Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Analytica Chimica Acta, 475(1-2), 85-96. doi:10.1016/s0003-2670(02)01037-1Montañez, M. I., Mayorga, C., Torres, M. J., Ariza, A., Blanca, M., & Perez-Inestrosa, E. (2011). Synthetic Approach to Gain Insight into Antigenic Determinants of Cephalosporins: In Vitro Studies of Chemical Structure−IgE Molecular Recognition Relationships. Chemical Research in Toxicology, 24(5), 706-717. doi:10.1021/tx100446gPastor-Navarro, N., Morais, S., Maquieira, Á., & Puchades, R. (2007). Synthesis of haptens and development of a sensitive immunoassay for tetracycline residues. Analytica Chimica Acta, 594(2), 211-218. doi:10.1016/j.aca.2007.05.045Chen, Z.-J., Fu, H.-J., Luo, L., Sun, Y.-M., Yang, J.-Y., Zeng, D.-P., … Xu, Z.-L. (2017). Development of competitive indirect ELISAs with a flexible working range for the simple quantification of melatonin in medicinal foods. Analytical Methods, 9(10), 1617-1626. doi:10.1039/c6ay03380fPastor-Navarro, N., Maquieira, Á., & Puchades, R. (2009). Review on immunoanalytical determination of tetracycline and sulfonamide residues in edible products. Analytical and Bioanalytical Chemistry, 395(4), 907-920. doi:10.1007/s00216-009-2901-ySingh, K. V., Kaur, J., Varshney, G. C., Raje, M., & Suri, C. R. (2003). Synthesis and Characterization of Hapten−Protein Conjugates for Antibody Production against Small Molecules. Bioconjugate Chemistry, 15(1), 168-173. doi:10.1021/bc034158vMas, S., Badran, A. A., Juárez, M.-J., Fernández de Rojas, D. H., Morais, S., & Maquieira, Á. (2020). Highly sensitive optoelectrical biosensor for multiplex allergy diagnosis. Biosensors and Bioelectronics, 166, 112438. doi:10.1016/j.bios.2020.112438Vultaggio, A., Matucci, A., Virgili, G., Rossi, O., Filì, L., Parronchi, P., … Maggi, E. (2009). Influence of total serum IgE levels on thein vitrodetection of β-lactams-specific IgE antibodies. Clinical & Experimental Allergy, 39(6), 838-844. doi:10.1111/j.1365-2222.2009.03219.

    Synthesis of skeletally diverse ß-lactam haptens for the in vitro diagnosis of IgE-mediated drug allergy

    Full text link
    [EN] We present the first synthesis of beta-lactam-derived haptens, leveraging the principles of diversity-oriented synthesis to discover compounds for drug allergy in vitro testing. We designed, synthesised, and performed in vitro immunological evaluation on 18 structurally diverse haptens derived from beta-lactam antibiotics. The antigens obtained with the synthesised haptens allow for the detection of specific anti-beta-lactam immunoglobulins G and E. Excellent diagnostic sensitivity (83%) and specificity (100%) were achieved when the panel of antigens was tested against a cohort of 31 human serum samples using a multiplexed compact disc-based in vitro testing tool. We posit that adopting this strategy could aid beta-lactam delabeling initiatives.This work was supported by the H2020 program (project COBIOPHAD, grant agreement No. 688448), Agencia Estatal de Investigacion (PID2019-110713RB-I00, FEDER awarded to S.M.); Generalitat Valenciana (PROMETEO/2020/094 awarded S.M.); and the National Institute of General Medical Sciences (GM- 1R35GM127045 awarded to S.L.S.). E.P.M. was supported by an FPU fellowship from the Ministerio de Educacio¿n, Cultura y Deporte (FPU15/01738 and EST18/00360). B.K.H. was supported by a fellowship from the National Science Foundation (DGE1144152 and DGE1745303).Peña-Mendizábal, E.; Hua, BK.; Ibáñez-Echevarría, E.; Hernández-Fernández De Rojas, D.; Maquieira Catala, A.; Schreiber, SL.; Morais, S. (2022). Synthesis of skeletally diverse ß-lactam haptens for the in vitro diagnosis of IgE-mediated drug allergy. Chemical Communications. 58(40):5964-5967. https://doi.org/10.1039/D2CC01677J59645967584
    corecore