200 research outputs found

    Thermal inactivation and conformational lock studies on glucose oxidase

    Get PDF
    In this study, the dissociative thermal inactivation and conformational lock theories are applied for the homodimeric enzyme glucose oxidase (GOD) in order to analyze its structure. For this purpose, the rate of activity reduction of glucose oxidase is studied at various temperatures using b-D-glucose as the substrate by incubation of enzyme at various temperatures in the wide range between 40 and 70 �C using UV–Vis spectrophotometry. It was observed that in the two ranges of temperatures, the enzyme has two different forms. In relatively low temperatures, the enzyme is in its dimeric state and has normal activity. In high temperatures, the activity almost disappears and it aggregates. The above achievements are confirmed by dynamic light scattering. The experimental parameter ‘‘n’’ as the obvious number of conformational locks at the dimer interface of glucose oxidase is obtained by kinetic data, and the value is near to two. To confirm the above results, the X-ray crystallography structure of the enzyme, GOD (pdb, 1gal), was also studied. The secondary and tertiary structures of the enzyme to track the thermal inactivation were studied by circular dichroism and fluorescence spectroscopy, respectively. We proposed a mechanism model for thermal inactivation of GOD based on the absence of the monomeric form of the enzyme by circular dichroism and fluorescence spectroscopy

    A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis

    Full text link
    A mathematical model is described for the simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglucosidase (AMG) and Zymomonas mobilis. By introducing the degree of polymerization (DP) of oligosaccharides produced from sago starch treated with α -amylase, a series of Michaelis-Menten equations were obtained. After determining kinetic parameters from the results of simple experiments carried out at various substrate and enzyme concentrations and from the subsite mapping theory, this model was adapted to simulate the SSF process. The results of simulation for SSF are in good agreement with experimental results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47811/1/449_2004_Article_BF00369488.pd

    An interdisciplinary approach to characterize peanut-allergic patients - first data from the FOOD@ consortium

    Get PDF
    BACKGROUND: Peanut allergy is a frequent cause of food allergy and potentially life-threatening. Within this interdisciplinary research approach, we aim to unravel the complex mechanisms of peanut allergy. As a first step were applied in an exploratory manner the analysis of peanut allergic versus non-allergic controls. METHODS: Biosamples were studied regarding DNA methylation signatures, gut microbiome, adaptive and innate immune cell populations, soluble signaling molecules and allergen-reactive antibody specificities. We applied a scalable systems medicine computational workflow to the assembled data. RESULTS: We identified combined cellular and soluble biomarker signatures that stratify donors into peanut-allergic and non-allergic with high specificity. DNA methylation profiling revealed various genes of interest and stool microbiota differences in bacteria abundances. CONCLUSION: By extending our findings to a larger set of patients (e.g., children vs. adults), we will establish predictors for food allergy and tolerance and translate these as for example, indicators for interventional studies

    Untersuchungen zum Einfluss von niederfrequentem Schall und schwachen Magnetfeldern auf das Wachstum von Saathafer und Gruenalgen

    No full text
    Available from TIB Hannover: DW 9229 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore