187 research outputs found

    Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction

    Full text link
    We aimed at establishing the optimal scan time for nuclear myocardial perfusion imaging (MPI) on an ultrafast cardiac gamma-camera using a novel cadmium-zinc-telluride (CZT) solid-state detector technology. METHODS: Twenty patients (17 male; BMI range, 21.7-35.5 kg/m(2)) underwent 1-d (99m)Tc-tetrofosmin adenosine stress and rest MPI protocols, each with a 15-min acquisition on a standard dual-detector SPECT camera. All scans were immediately repeated on an ultrafast CZT camera over a 6-min acquisition time and reconstructed from list-mode raw data to obtain scan durations of 1 min, 2 min, etc., up to a maximum of 6 min. For each of the scan durations, the segmental tracer uptake value (percentage of maximum myocardial uptake) from the CZT camera was compared by intraclass correlation with standard SPECT camera data using a 20-segment model, and clinical agreement was assessed per coronary territory. Scan durations above which no further relevant improvement in uptake correlation was found were defined as minimal required scan times, for which Bland-Altman limits of agreement were calculated. RESULTS: Minimal required scan times were 3 min for low dose (r = 0.81; P < 0.001; Bland-Altman, -11.4% to 12.2%) and 2 min for high dose (r = 0.80; P < 0.001; Bland-Altman, -7.6% to 12.9%), yielding a clinical agreement of 95% and 97%, respectively. CONCLUSION: We have established the minimal scan time for a CZT solid-state detector system, which allows 1-d stress/rest MPI with a substantially reduced acquisition time resulting in excellent agreement with regard to uptake and clinical findings, compared with MPI from a standard dual-head SPECT gamma-camera

    Cross-sectional study on the impact of adverse childhood experiences on coronary flow reserve in male physicians with and without occupational burnout

    Get PDF
    OBJECTIVE Physicians face documented challenges to their mental and physical well-being, particularly in the forms of occupational burnout and cardiovascular disease. This study examined the previously under-researched intersection of early life stressors, prolonged occupational stress, and cardiovascular health in physicians. METHODS Participants were 60 practicing male physicians, 30 with clinical burnout, defined by the Maslach Burnout Inventory, and 30 non-burnout controls. They completed the Adverse Childhood Experiences (ACE) Questionnaire asking about abuse, neglect and household dysfunctions before the age of 18, and the Perceived Stress Scale to rate thoughts and feelings about stress in the past month. Endothelium-independent (adenosine challenge) coronary flow reserve (CFR) and endothelium-dependent CFR (cold pressor test) were assessed by positron emission tomography-computed tomography. The segment stenosis score was determined by coronary computed tomography angiography. RESULTS Twenty-six (43%) participants reported at least one ACE and five (8%) reported ≥4 ACEs. A higher ACEs sum score was associated with lower endothelium-independent CFR (r partial (rp_{p}) = -0.347, p = .01) and endothelium-dependent CFR (rp_{p} = -0.278, p = .04), adjusting for age, body mass index, perceived stress and segment stenosis score. In exploratory analyses, participants with ≥4 ACEs had lower endothelium-independent CFR (rp_{p} = -0.419, p = .001) and endothelium-dependent CFR (rp_{p} = -0.278, p = .04), than those with <4 ACEs. Endothelium-dependent CFR was higher in physicians with burnout than in controls (rp_{p} = 0.277, p = .04). No significant interaction emerged between burnout and ACEs for CFR. CONCLUSION The findings suggest an independent association between ACEs and CFR in male physicians and emphasize the nuanced relationship between early life stressors, professional stress, and cardiovascular health

    Risk stratification using coronary artery calcium scoring based on low tube voltage computed tomography

    Full text link
    To determine if coronary artery calcium (CAC) scoring using computed tomography at 80 kilovolt-peak (kVp) and 70-kVp and tube voltage-adapted scoring-thresholds allow for accurate risk stratification as compared to the standard 120-kVp protocol. We prospectively included 170 patients who underwent standard CAC scanning at 120-kVp and 200 milliamperes and additional scans with 80-kVp and 70-kVp tube voltage with adapted tube current to normalize image noise across scans. Novel kVp-adapted thresholds were applied to calculate CAC scores from the low-kVp scans and were compared to those from standard 120-kVp scans by assessing risk reclassification rates and agreement using Kendall’s rank correlation coefficients (Τb) for risk categories bounded by 0, 1, 100, and 400. Interreader reclassification rates for the 120-kVp scans were assessed. Agreement for risk classification obtained from 80-kVp and 70-kVp scans as compared to 120-kVp was good (Τb = 0.967 and 0.915, respectively; both p < 0.001) with reclassification rates of 7.1% and 17.2%, respectively, mostly towards a lower risk category. By comparison, the interreader reclassification rate was 4.1% (Τb = 0.980, p < 0.001). Reclassification rates were dependent on body mass index (BMI) with 7.1% and 13.6% reclassifications for the 80-kVp and 70-kVp scans, respectively, in patients with a BMI < 30 kg/m2 (n = 140), and 2.9% and 7.4%, respectively, in patients with a BMI < 25 kg/m2 (n = 68). Mean effective radiation dose from the 120-kVp, the 80-kVp, and 70-kVp scans was 0.54 ± 0.03, 0.42 ± 0.02, and 0.26 ± 0.02 millisieverts. CAC scoring with reduced tube voltage allows for accurate risk stratification if kVp-adapted thresholds for calculation of CAC scores are applied

    Radiomics for the detection of diffusely impaired myocardial perfusion: A proof-of-concept study using 13N-ammonia positron emission tomography

    Get PDF
    AIM The current proof-of-concept study investigates the value of radiomic features from normal 13N-ammonia positron emission tomography (PET) myocardial retention images to identify patients with reduced global myocardial flow reserve (MFR). METHODS Data from 100 patients with normal retention 13N-ammonia PET scans were divided into two groups, according to global MFR (i.e., < 2 and ≥ 2), as derived from quantitative PET analysis. We extracted radiomic features from retention images at each of five different gray-level (GL) discretization (8, 16, 32, 64, and 128 bins). Outcome independent and dependent feature selection and subsequent univariate and multivariate analyses was performed to identify image features predicting reduced global MFR. RESULTS A total of 475 radiomic features were extracted per patient. Outcome independent and dependent feature selection resulted in a remainder of 35 features. Discretization at 16 bins (GL16) yielded the highest number of significant predictors of reduced MFR and was chosen for the final analysis. GLRLM_GLNU was the most robust parameter and at a cut-off of 948 yielded an accuracy, sensitivity, specificity, negative and positive predictive value of 67%, 74%, 58%, 64%, and 69%, respectively, to detect diffusely impaired myocardial perfusion. CONCLUSION A single radiomic feature (GLRLM_GLNU) extracted from visually normal 13N-ammonia PET retention images independently predicts reduced global MFR with moderate accuracy. This concept could potentially be applied to other myocardial perfusion imaging modalities based purely on relative distribution patterns to allow for better detection of diffuse disease

    Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease

    Get PDF
    Aims Cardiac hybrid imaging by fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA) provides important complementary diagnostic information for coronary artery disease (CAD) assessment. We aimed at assessing the impact of cardiac hybrid imaging on the choice of treatment strategy selection for CAD. Methods and results Three hundred and eighteen consecutive patients underwent a 1 day stress/rest (99m)Tc-tetrofosmin SPECT and a CCTA on a separate scanner for evaluation of CAD. Patients were divided into one of the following three groups according to findings in the hybrid images obtained by fusing SPECT and CCTA: (i) matched finding of stenosis by CCTA and corresponding reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; (iii) normal finding by both CCTA and SPECT. Follow-up was confined to the first 60 days after hybrid imaging as this allows best to assess treatment strategy decisions including the revascularization procedure triggered by its findings. Hybrid images revealed matched, unmatched, and normal findings in 51, 74, and 193 patients. The revascularization rate within 60 days was 41, 11, and 0% for matched, unmatched, and normal findings, respectively (P< 0.001 for all inter-group comparisons). Conclusion Cardiac hybrid imaging with SPECT and CCTA provides an added clinical value for decision making with regard to treatment strategy for CAD

    Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography

    Get PDF
    Aims Although cardiac hybrid imaging, fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA), provides important complementary diagnostic information for coronary artery disease (CAD) assessment, no prognostic data exist on the predictive value of cardiac hybrid imaging. Hence, the aim of this study was to assess the prognostic value of hybrid SPECT/CCTA images. Methods and results Of 335 consecutive patients undergoing a 1-day stress/rest 99mTc-tetrofosmin SPECT and a CCTA, acquired on stand-alone scanners and fused to obtain cardiac hybrid images, follow-up was obtained in 324 patients (97%). Survival free of all-cause death or non-fatal myocardial infarction (MI) and free of major adverse cardiac events (MACE: death, MI, unstable angina requiring hospitalization, coronary revascularizations) was determined using the Kaplan-Meier method for the following groups: (i) stenosis by CCTA and matching reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; and (iii) normal finding by CCTA and SPECT. Cox's proportional hazard regression was used to identify independent predictors for cardiac events. At a median follow-up of 2.8 years (25th-75th percentile: 1.9-3.6), 69 MACE occurred in 47 patients, including 20 death/MI. A corresponding matched hybrid image finding was associated with a significantly higher death/MI incidence (P < 0.005) and proved to be an independent predictor for MACE. The annual death/MI rate was 6.0, 2.8, and 1.3% for patients with matched, unmatched, and normal findings. Conclusion Cardiac hybrid imaging allows risk stratification in patients with known or suspected CAD. A matched defect on hybrid image is a strong predictor of MAC

    Coronary microvascular function in male physicians with burnout and job stress: an observational study

    Get PDF
    BACKGROUND As a professional group, physicians are at increased risk of burnout and job stress, both of which are associated with an increased risk of coronary heart disease that is at least as high as that of other professionals. This study aimed to examine the association of burnout and job stress with coronary microvascular function, a predictor of major adverse cardiovascular events. METHODS Thirty male physicians with clinical burnout and 30 controls without burnout were included. Burnout was assessed with the Maslach Burnout Inventory and job stress with the effort-reward imbalance and overcommitment questionnaire. All participants underwent myocardial perfusion positron emission tomography to quantify endothelium-dependent (cold pressor test) and endothelium-independent (adenosine challenge) coronary microvascular function. Burnout and job stress were regressed on coronary flow reserve (primary outcome) and two additional measures of coronary microvascular function in the same model while adjusting for age and body mass index. RESULTS Burnout and job stress were significantly and independently associated with endothelium-dependent microvascular function. Burnout was positively associated with coronary flow reserve, myocardial blood flow response, and hyperemic myocardial blood flow (r partial = 0.28 to 0.35; p-value = 0.008 to 0.035). Effort-reward ratio (r partial =  - 0.32 to - 0.38; p-value = 0.004 to 0.015) and overcommitment (r partial =  - 0.30 to - 0.37; p-value = 0.005 to 0.022) showed inverse associations with these measures. CONCLUSIONS In male physicians, burnout and high job stress showed opposite associations with coronary microvascular endothelial function. Longitudinal studies are needed to show potential clinical implications and temporal relationships between work-related variables and coronary microvascular function. Future studies should include burnout and job stress for a more nuanced understanding of their potential role in cardiovascular health

    A simple coronary CT angiography-based jeopardy score for the identification of extensive coronary artery disease: Validation against invasive coronary angiography

    Get PDF
    PURPOSE The invasive British Cardiovascular Intervention Society Jeopardy Score (iBCIS-JS) is a simple angiographic scoring system, enabling quantification of the extent of jeopardized myocardium related to clinically significant coronary artery disease (CAD). The purpose of this study was to develop and validate the coronary CT angiography-based BCIS-JS (CT-BCIS-JS) against the iBCIS-JS in patients with suspected or stable CAD. MATERIALS AND METHODS Patients who underwent coronary CT angiography followed by invasive coronary angiography, within 90 days were retrospectively included. CT-BCIS-JS and iBCIS-JS were calculated, with a score ≥ 6 indicating extensive CAD. Correlation between the CT-BCIS-JS and iBCIS-JS was searched for using Spearman's coefficient, and agreement with weighted Kappa (κ) analyses. RESULTS A total of 122 patients were included. There were 102 men and 20 women with a median age of 62 years (Q1, Q3: 54, 68; age range: 19-83 years). No differences in median CT-BCIS-JS (4; Q1, Q3: 0, 8) and median iBCIS-JS (4; Q1, Q3: 0, 8) were found (P = 0.18). Extensive CAD was identified in 53 (43.4%) and 52 (42.6%) patients using CT-BCIS-JS and iBCIS-JS, respectively (P = 0.88). CT-based and iBCIS-JS showed excellent correlation (r = 0.98; P < 0.001) and almost perfect agreement (κ = 0.93; 95% confidence interval: 0.90-0.97). Agreement for identification of an iBCIS-JS ≥ 6 was almost perfect (κ = 0.94; 95 % confidence interval: 0.87-0.99). CONCLUSION The CT-BCIS-JS represents a feasible, and accurate method for quantification of CAD, with capabilities not different from those of iBCIS-JS. It enables simple, non-invasive identification of patients with anatomically extensive CAD

    Inter-scan variability of coronary artery calcium scoring assessed on 64-multidetector computed tomography vs. dual-source computed tomography: a head-to-head comparison

    Get PDF
    Aims Coronary artery calcium (CAC) scoring has emerged as a tool for risk stratification and potentially for monitoring response to risk factor modification. Therefore, repeat measurements should provide robust results and low inter-scanner variability for allowing meaningful comparison. The purpose of this study was to investigate inter-scanner variability of CAC for Agatston, volume, and mass scores by head-to-head comparison using two different cardiac computed tomography scanners: 64-detector multislice CT (MSCT) and 64-slice dual-source CT (DSCT). Methods and results Thirty patients underwent CAC measurements on both 64-MSCT (GE LightSpeed XT scanner: 120 kV, 70 mAs, 2.5 mm slices) and 64-DSCT (Siemens Somatom Definition: 120 kV, 80 mAs, 3 mm slices) within <100 days (0-97). Retrospective intra-scan comparison revealed an excellent correlation. The excellent intra-scan (inter-observer) agreement was documented by narrow limits of agreement and a correlation coefficient of variation (COV) of r ≥ 0.99 (P < 0.001) for all CAC scores with a low COV for both scanners (64-MSCT/64-DSCT), i.e. Agatston (2.0/2.1%), mass (3.0/2.0%), and volume (4.7/3.9%). Inter-scanner comparison revealed larger Bland-Altman (BA) limits of agreement, despite high correlation (r ≥ 0.97) for all scores, with COV at 15.1, 21.6, and 44.9% for Agatston, mass, and volume scores. The largest BA limits were observed for volume scores (−1552.8 to 574.2), which was massively improved (−241.0 to 300.4, COV 11.5%) after reanalysing the 64-DSCT scans (Siemens) with GE software/workstation (while Siemens software/workstation does not allow cross-vendor analysis). Phantom measurements confirmed overestimation of volume scores by ‘syngo Ca-Scoring' (Siemens) software which should therefore be reviewed (vendor has been notified). Conclusion Intra- and inter-scan agreement of CAC measurement in a given data set is excellent. Inter-scanner variability is reasonable, particularly for Agatston units in the clinically most relevant range <1000. The use of different software solutions has a greater influence particularly on volume scores than the use of different scanner type
    corecore