2,868 research outputs found

    Reproducibility of cognitive endpoints in clinical trials: Lessons from neurofibromatosis type 1

    Get PDF
    OBJECTIVE: Rapid developments in understanding the molecular mechanisms underlying cognitive deficits in neurodevelopmental disorders have increased expectations for targeted, mechanism-based treatments. However, translation from preclinical models to human clinical trials has proven challenging. Poor reproducibility of cognitive endpoints may provide one explanation for this finding. We examined the suitability of cognitive outcomes for clinical trials in children with neurofibromatosis type 1 (NF1) by examining test-retest reliability of the measures and the application of data reduction techniques to improve reproducibility. METHODS: Data were analyzed from the STARS clinical trial (n = 146), a multi-center double-blind placebo-controlled phase II trial of lovastatin, conducted by the NF Clinical Trials Consortium. Intra-class correlation coefficients were generated between pre- and post-performances (16-week interval) on neuropsychological endpoints in the placebo group to determine test-retest reliabilities. Confirmatory factor analysis was used to reduce data into cognitive domains and account for measurement error. RESULTS: Test-retest reliabilities were highly variable, with most endpoints demonstrating unacceptably low reproducibility. Data reduction confirmed four distinct neuropsychological domains: executive functioning/attention, visuospatial ability, memory, and behavior. Test-retest reliabilities of latent factors improved to acceptable levels for clinical trials. Applicability and utility of our model was demonstrated by homogeneous effect sizes in the reanalyzed efficacy data. INTERPRETATION: These data demonstrate that single observed endpoints are not appropriate to determine efficacy, partly accounting for the poor test-retest reliability of cognitive outcomes in clinical trials in neurodevelopmental disorders. Recommendations to improve reproducibility are outlined to guide future trial design

    Surface Wave Transmission Line Theory for Single and Many Wire Systems

    Full text link
    Examining cables using many conductor transmission line theory has shed light on the modes supported by various cable types. However, so far the theory disregards the fundamental surface wave mode whose lateral confinement increases with frequency and hence is expected to play an important role in high frequency applications. To address this issue, we propose an extension to the theory which incorporates surface waves on uncoated, cylindrical wires. Crucially, this requires new definitions of the per unit length transmission line parameters which are derived using the single wire surface wave solution. By closely examining a two wire and three wire system, we show that these new parameters can predict surface waves as well as modes found using conventional many conductor transmission line theory. Furthermore, all calculated modes are validated experimentally by diagonalization of a measured channel transfer matrix. Additionally, the theoretically predicted propagation constants for the modes are validated against full numerical simulation for the two wire case and good agreement is observed when proximity effects can be neglected.Comment: 22 pages, 5 Figures, data and supplementary material will be made available at a later stag

    Dielectric-induced surface wave radiation loss.

    Get PDF
    We investigate a model which shows how the introduction of a perturbing dielectric close to an electromagnetic surface wave leads to radiation away from the surface through the dielectric. This resembles a surface waveguide passing through a wall or being deployed underground. Our theory, which is based on the mode-matching technique, allows quantitative determination of losses from a bound surface wave mode up to the point of its complete extinction. For a surface wave supported by a coated, conducting sheet the attenuation due to the perturbing dielectric is calculated for a number of frequencies, permittivities of the perturbation and separations between the sheet and the perturbing dielectric. The accuracy of our results is verified by simulation of the system with a full-wave numerical solution. Finally, we report experimental data of perturbed surface waves on a cable, which are in qualitative agreement with our model

    Analytic modelling of a planar Goubau line with circular conductor.

    Get PDF
    Planar Goubau lines show promise as high frequency, low-loss waveguides on a substrate. However, to date only numerical simulations and experimental measurements have been performed. This paper analytically investigates the surface wave mode propagating along a planar Goubau line consisting of a perfectly conducting circular wire on top of a dielectric substrate of finite thickness but infinite width. An approximate equation for the propagation constant is derived and solved through numerical integration. The dependence of the propagation constant on various system parameters is calculated and the results agree well with full numerical simulations. In addition, the spatial distribution of the longitudinal electric field is reported and excellent agreement with a numerical simulation and previous studies is found. Moreover, validation against experimental phase velocity measurements is also reported. Finally, insights gained from the model are considered for a Goubau line with a rectangular conductor. The analytic model reveals that the propagating mode of a planar Goubau line is hybrid in contrast to the transverse magnetic mode of a classic Goubau line

    The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment

    Get PDF
    OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19

    Interaction between surface waves on wire lines.

    Get PDF
    This paper investigates coupling between electromagnetic surface waves on parallel wires. Finite-element method (FEM)-based and analytic models are developed for single- and double-wire Sommerfeld and Goubau lines. Models are validated via measurements for Goubau lines and a comparison between the analytic and the FEM-based computations for coupled Sommerfeld- and Goubau-type lines is carried out. The measurements and calculations show remarkable agreement. The FEM-based and analytic models match remarkably well too. The results exhibit new favourable effects for surface waves propagation over multiple conductors. The short-range behaviour of the coupled wires and, consequently, the existence of an optimum separation of coupled wires is one of the most significant findings of this paper. We comment on the relevance of our results, particularly in relation to applications of high bandwidth demands and cross-coupling effects

    Effects of arterial blood gas levels on cerebral blood flow and oxygen transport

    Get PDF
    Near Infra-Red Spectroscopy (NIRS) is a non-invasive technique which can be used to investigate cerebral haemodynamics and oxygenation with high temporal resolution. When combined with measures of Cerebral Blood Flow (CBF), it has the potential to provide information about oxygen delivery, utilization and metabolism. However, the interpretation of experimental results is complex. Measured NIRS signals reflect both scalp and cerebral haemodynamics and are influenced by many factors. The relationship between Arterial Blood Pressure (ABP) and CBF has been widely investigated and it central to cerebral autoregulation. Changes in arterial blood gas levels have a significant effect on ABP and CBF and these relationships have been quantified previously. The relationship between ABP and NIRS signals, however, has not been fully characterized. In this paper, we thus investigate the influence of changes in arterial blood gas levels both experimentally and theoretically, using an extended mathematical model of cerebral blood flow and metabolism, in terms of the phase angle at 0.1 Hz. The autoregulation response is found to be strongly dependent upon the carbon dioxide (CO2) partial pressure but much less so upon changes in arterial oxygen saturation (SaO2). The results for phase angle sensitivity to CO2 show good agreement between experimental and theory, but a poorer agreement is found for the sensitivity to SaO2

    Single-molecule and super-resolved imaging deciphers membrane behavior of onco-immunogenic CCR5

    Get PDF
    The ability of tumors to establish a pro-tumorigenic microenvironment is an important point of investigation in the search for new therapeutics. Tumors form microenvironments in part by the “education” of immune cells attracted via chemotactic axes such as that of CCR5-CCL5. Further, CCR5 upregulation by cancer cells, coupled with its association with pro-tumorigenic features such as drug resistance and metastasis, has suggested CCR5 as a therapeutic target. However, with several conformational “pools” being reported, phenotypic investigations must be capable of unveiling conformational heterogeneity. Addressing this challenge, we performed super-resolution structured illumination microscopy (SIM) and single molecule partially TIRF-coupled HILO (PaTCH) microscopy of CCR5 in fixed cells. SIM data revealed a non-random spatial distribution of CCR5 assemblies, while Intensity-tracking of CCR5 assemblies from PaTCH images indicated dimeric sub-units independent of CCL5 perturbation. These biophysical methods can provide important insights into the structure and function of onco-immunogenic receptors and many other biomolecules

    Ferric iron geometry and coordination during hydrolysis and ferrihydrite precipitation

    Get PDF
    Definitive structural characterisation of ferrihydrite has challenged scientists primarily due to its nanosized particles and inherent long-range structural disorder which challenges analytical methodology (and modelling) typically employed to determine the structure of minerals. Here we report on the application of a synchrotron quick-scanning X-ray absorption spectroscopy (XAS) approach, which allows the collection of Extended X-ray Absorption Fine Structure (EXAFS) spectral data to k = 15 Å-1 in < 1 minute, to obtain unparalleled iron Kedge data on the hydrolysis of FeIII(H2O)6 and ferrihydrite precipitation. Modelling of the pre-edge and EXAFS data: 1) supports theoretical studies which have suggested the existence of a monomeric penta-coordinated FeIII hydrolysis species and; 2) corroborates recently proposed structural models of ferrihydrite that contain tetrahedral FeIII. Modelling results indicate that ferrihydrite consists of 15 to 25 % tetrahedral FeIII and suggest that this geometry must be included in any comprehensive structural model of ferrihydrite and, furthermore, should be considered when evaluating the reactivity, stability and other structure-property relationships of this mineral. © The Authors

    Can HRCT be used as a marker of airway remodelling in children with difficult asthma?

    Get PDF
    BACKGROUND: Whole airway wall thickening on high resolution computed tomography (HRCT) is reported to parallel thickening of the bronchial epithelial reticular basement membrane (RBM) in adult asthmatics. A similar relationship in children with difficult asthma (DA), in whom RBM thickening is a known feature, may allow the use of HRCT as a non-invasive marker of airway remodelling. We evaluated this relationship in children with DA. METHODS: 27 children (median age 10.5 [range 4.1-16.7] years) with DA, underwent endobronchial biopsy from the right lower lobe and HRCT less than 4 months apart. HRCTs were assessed for bronchial wall thickening (BWT) of the right lower lobe using semi-quantitative and quantitative scoring techniques. The semi-quantitative score (grade 0-4) was an overall assessment of BWT of all clearly identifiable airways in HRCT scans. The quantitative score (BWT %; defined as [airway outer diameter - airway lumen diameter]/airway outer diameter x100) was the average score of all airways visible and calculated using electronic endpoint callipers. RBM thickness in endobronchial biopsies was measured using image analysis. 23/27 subjects performed spirometry and the relationships between RBM thickness and BWT with airflow obstruction evaluated. RESULTS: Median RBM thickness in endobronchial biopsies was 6.7(range 4.6-10.0) microm. Median qualitative score for BWT of the right lower lobe was 1(range 0-1.5) and quantitative score was 54.3 (range 48.2-65.6)%. There was no relationship between RBM thickness and BWT in the right lower lobe using either scoring technique. No relationship was found between FEV1 and BWT or RBM thickness. CONCLUSION: Although a relationship between RBM thickness and BWT on HRCT has been found in adults with asthma, this relationship does not appear to hold true in children with D
    • …
    corecore