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Analytic modelling of a planar 
Goubau line with circular conductor
Tobias Schaich1*, Daniel Molnar1, Anas Al Rawi1,2 & Mike Payne1

Planar Goubau lines show promise as high frequency, low-loss waveguides on a substrate. However, 
to date only numerical simulations and experimental measurements have been performed. This paper 
analytically investigates the surface wave mode propagating along a planar Goubau line consisting 
of a perfectly conducting circular wire on top of a dielectric substrate of finite thickness but infinite 
width. An approximate equation for the propagation constant is derived and solved through numerical 
integration. The dependence of the propagation constant on various system parameters is calculated 
and the results agree well with full numerical simulations. In addition, the spatial distribution of 
the longitudinal electric field is reported and excellent agreement with a numerical simulation and 
previous studies is found. Moreover, validation against experimental phase velocity measurements 
is also reported. Finally, insights gained from the model are considered for a Goubau line with a 
rectangular conductor. The analytic model reveals that the propagating mode of a planar Goubau line 
is hybrid in contrast to the transverse magnetic mode of a classic Goubau line.

Surface waves (SW) on circular conducting wires have been of theoretical interest since their discovery by 
Sommerfeld1. However, due to the large lateral extent of the fields at low frequencies, practical applicability 
seemed limited at first. Goubau discovered that by coating wires in dielectric or corrugating the wire’s surface, the 
fields’ lateral confinement could be drastically enhanced2. These coated wires, named Goubau lines in later years, 
showed low loss and weak dispersion. Hence, they were discussed as an alternative to traditional, two-conductor 
transmission lines. Recently, interest in surface wave technology has re-emerged at the GHz-THz frequency 
range where it presents a promising alternative to current waveguide technology3,4. Furthermore, by introduc-
ing sub-wavelength corrugations, spoof surface plasmon polaritons emerge which have tunable properties and 
can exhibit sub-wavelength lateral confinement5–7. These new technologies have been discussed as solutions to 
problems such as signal integrity in integrated circuits and backhaul solutions for the network standard 5G8,9.

In many cases it is favourable to print a conductor design on a substrate using established printed circuit board 
fabrication processes such as etching. This led to the invention of a planar Goubau line (PGL) consisting of a thin 
rectangular conducting strip on a substrate10–13. It represents an alternative to standard substrate transmission 
lines namely the microstrip line and as such multiple essential electronic components have been devised for the 
PGL including broadband loads, power dividers and frequency selective filters14–16. Substrate integrated leaky 
wave antennas have been designed based on the PGL as well17–19. Additionally, application of PGLs in terahertz 
spectroscopy has been established20,21.

Despite these advances, only numerical and experimental studies have been published on the PGL to date 
and no analytic theory or model exists22,23. A difficulty in the exact treatment is presented by the presence of 
sharp corners which introduce lightning rod effects12. Therefore, a simplified model of the Goubau line in which 
the rectangular conductor is exchanged for a conductor with circular cross section will be considered in this 
paper. For ease of notation the simplified system will be referred to as a PGL as well. A related system - the single 
conductor above a semi-infinite conducting earth - has been extensively studied (see24 and references therein). 
We will draw parallels to this system where appropriate.

The paper is structured as follows: First, we discuss the wave created by an infinitesimally small current fila-
ment above a substrate. Then, the finite thickness of wire is incorporated to derive a characteristic equation for 
the system and applicability criteria for this approach are discussed. Using the derived equation, the dependence 
of the propagation constant on input parameters is established and some field patterns are reported. We validate 
our results against numerical data obtained through the finite element method and experiment. Finally, we draw 
parallels to the Goubau line with rectangular conductor.
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Derivation of the electromagnetic fields
The system we are investigating consists of a perfectly conducting wire of radius a with its centre located at a 
height h above a substrate of thickness b. Figure 1 shows the cross section of the system and defines the coordi-
nate system (x, y, z) located on the surface of the substrate with its origin in line with the centre of the wire. We 
assume the wire and substrate are uniform in the z-direction which will be the direction of wave propagation. 
Additionally, the substrate extends infinitely far in the x-plane. It has a dielectric constant of ǫ2 and is immersed 
in a medium with dielectric constant ǫ1 with ǫ1 < ǫ2 . For most practical applications the surrounding medium 
is air whose dielectric constant can be approximated as the dielectric permittivity of vacuum ǫ0 . All materials 
are assumed to be non-magnetic and have permeability equal to the magnetic constant µ0.

We start our derivation by postulating a time harmonic current density �J  that replaces the wire. Its form, 
which is motivated by the current found in regular surface waveguides such as the Goubau line, is given by:

with angular frequency ω , time t, propagation constant β , current amplitude I, unit vector ẑ and Dirac delta 
function δ . This approach is only strictly valid in the case where the wire is infinitesimally small but it can also 
give reasonable results for thin wires. The physical conditions under which wires may be considered thin will 
be given later when discussing the characteristic equation. The presented current density can be interpreted as 
the exact current distribution averaged across the cross section of the wire. For now, we note that as we are not 
resolving the exact current distribution inside the wire, the near field close to the wire will deviate from an exact 
solution. However, at distances much greater than the wire radius, the distribution of current inside the wire 
should have an insignificant effect on the electromagnetic fields.

Next, we assume that the total field can be separated into a transverse magnetic (TM) and transverse electric 
(TE) component which are characterised by having no longitudinal magnetic or electric field, respectively. Thus, 
we may express the total electric and magnetic field, �E and �H , as

We expect the fields to be in phase with the current density and should also contain a factor eiωt−iβz which 
will be implicitly assumed but omitted for clarity. Ampere’s and Faraday’s law then take the form

where ǫj takes either the value ǫ1 or ǫ2 . From the defining property of TE and TM modes, it may be shown that all 
field components may be calculated from the longitudinal component of the magnetic and electric field, Hz and 
Ez , respectively25. Taking the curl of the second equation in (3) and using Faraday’s and Gauss’ law in combina-
tion with the continuity equation as well as standard vector calculus identities, we arrive at

where we have introduced k2j = ω2ǫjµ0 and the new variable γ 2
j = k2j − β2 with j ∈ {1, 2} . In a similar fashion, 

we may manipulate Eq. (4) to arrive at

(1)�J = Iδ(x)δ(y − h)eiωt−iβz ẑ

(2)�E = �ETM + �ETE �H = �HTM + �HTE

(3)�∇ × �HTM = −iωǫj �ETM + Iδ(x)δ(y − h)ẑ �∇ × �ETM = iωµ0
�HTM

(4)�∇ × �HTE = −iωǫj �ETE �∇ × �ETE = iωµ0
�HTE
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Figure 1.   Cross sectional illustration of the simplified planar Goubau line. A wire of radius a is at a height 
h over a dielectric slab with permittivity ǫ2 and thickness b. The surrounding medium has permittivity ǫ1 . A 
Cartesian coordinate system (x, y, z) is defined with its origin placed on the substrate in line with the centre of 
the conductor.
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As the boundaries along the dielectric substrate extend infinitely along the x-direction, it is convenient to 
introduce a Fourier transform and its inverse as

where ξ represents a spatial frequency. Similarly, H̃TE
z  is the Fourier transform of HTE

z  . Generally, we signify 
functions in Fourier space by a tilde. The transformed Eqs. (5) and (6) become:

with u2j = γ 2
j − ξ 2 . Solutions to these equations are readily available26. We impose the condition that fields 

should decay towards infinity and find

where u1 is defined to have positive imaginary part such that the fields’ energy remains finite. C1 to C8 are con-
stants yet to be determined. We introduced the free space impedance η0 =

√
µ0/ǫ0 so all constants have the 

same dimensions.
At the interface between the dielectric substrate and air, the tangential components of �E and �H must be con-

tinuous. Introducing A = −ωµ0I
γ 2
1

k21

eiu1h

2u1
 , these boundary conditions may be expressed in the following matrix 

equation

with relative dielectric permittivities εr,j = ǫj/ǫ0 and matrix Q which is given in the supplementary material. 
Q may be inverted to find expressions for the constants C1 to C8 . We note here that the TE and TM modes are 
coupled through the continuity of Hx and Ex at the boundaries between substrate and air. Pure TM solutions 
with C5,C6,C7 and C8 equal to zero cannot fulfil the matrix equation. Hence, the resultant electromagnetic field 
will be hybrid in nature contrary to the Goubau mode for the dielectric coated cylinder.

Characteristic equation
So far we have discussed the exact solution for an arbitrary, infinitesimal current filament carrying a known 
current wave at a height h above a substrate. However, in most practical cases, we want to find the propaga-
tion constant of the wave carried by an extended wire of finite size. This is still a formidable task even with the 
possibility of formally expressing the electromagnetic fields given any current distribution by convoluting the 
calculated fundamental solution with a given source term26.

As a means of characterising the propagating mode, we introduce the effective refractive index neff  which 
is related to the free space wave number k0 via β = neff k0 . In order to formulate an approximate characteristic 
equation, we assume the wire is a perfect electrical conductor (PEC). This is valid for many metals in the GHz 
to THz frequency range if the radius is much larger than the skin depth. As a PEC, the tangential electric field 
should be zero at its surface. In particular, the z-component of the electric field must be zero. Imposing this 
condition at any point on the wire’s surface, gives an equation for the approximate propagation constant if the 
wire is sufficiently thin27. Hence, the characteristic equation may be expressed as

In a study on the validity of this approach for a wire in air above a semi-infinite earth, Pogorzelski and Chang 
showed that reasonable results are obtained if the contribution of azimuthally varying currents in the wire can 
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be neglected28. Furthermore, it was shown in the same work that when the wire is close to the earth signified by 
k2h ≪ 1 and |γ1|h ≪ 1 , the contribution due to the first order azimuthal terms in the effective refractive index 
of the wave scales as

where �neff  is the correction due to higher order terms, n(0)eff  is the zero order effective index and g(neff ) is a 
function of the effective refractive index and the geometry given by

Hence, the correction to the effective refractive index �neff  due to azimuthal currents can be neglected if 
the absolute value of the right hand side in Eq. (14) is small. In our case the higher order contributions should 
be even smaller because the dielectric is only of finite thickness. Therefore, Eq. (14) provides an estimate on the 
obtainable accuracy when using the thin wire approximation to calculate the propagation constant.

In order to express and solve the characteristic equation, we focus on the amplitude C1 which is required for 
calculating Ez in real space, in contrast to Fourier space, above the substrate via the inverse Fourier transform 
(7). Solving the matrix Eq. (12), we find that it may be written in the form

where F is a function of ξ whose complete form is given in the supplementary material. It has some noteworthy 
properties. First it only depends on ξ 2 reflecting the mirror symmetry of the system with respect to the plane 
x = 0 . Furthermore, for |ξ | ≫ |γ2| and |ξb| ≫ 1 it asymptotically behaves as

which can be shown as all exponential terms eiu2b in F(ξ) will be very small. This expression is identical to the 
one obtained by Wait for the case of a wire above a semi-infinite earth27. In fact, in the corresponding limit of 
b → ∞ the conditions on ξ can be relaxed. This is due to all contributions involving eiu2b becoming infinitely 
fast oscillating or zero so that they can be neglected in the inverse Fourier transform in Eq. (7).

Let us reiterate the Fourier transform of Ez , which is of the following form

To calculate the inverse Fourier transform, we use the identity

where K0 is the zeroth order modified Bessel function of the second kind29. Furthermore, for a real number V 
for which Vb ≫ 1 and V ≫ |γ2| we may replace u1 with iξ and F(ξ) with its asymptotic form. Hence, the inverse 
transform gives

where Ŵ is the incomplete Gamma function30. A similar expression is obtained for the integration from −∞ to 
−V  as F(ξ) only depends on ξ 2 . In the region from -V to V, no analytic expression for the integral was found 
but it may be calculated numerically. Note that, in general, the Cauchy principal value of the integral needs to 
be taken because the integrand may contain poles.

The field may then be expressed as

where R indicates that the real part of the expression in brackets should be taken.
Finally, let us consider the range of values which the free parameters of the problem, namely angular frequency 

ω , wire radius a, height h, substrate thickness b, current amplitude I and subtrate dielectric constant ε2 can take. 
The frequency ω for which the model can be applied is capped by the possibility to carry out the numerical inte-
gration necessary for determining the longitudinal electric field in Eq. (21). We found that calculations above 30 
GHz proved increasingly difficult. Additionally, higher order modes and azimuthally varying currents will play an 
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increasing role with frequency deteriorating the accuracy of the model. The conductor radius is limited in size by 
the thin-wire approximation (14). As a rule of thumb a ≪ � with � being the free space wavelength. Clearly, this 
also limits the height which cannot be smaller than the conductor radius. Similarly, for the substrate permittivity 
Eq. (14) provides a limit to the applicability. Generally, ε2 and ε1 should be of the same order of magnitude. The 
larger their difference, the stronger the azimuthally dependent currents are which make the theory inaccurate. 
The substrate thickness b will influence this as well and therefore should be small compared to the wavelength 
b ≪ � . Especially, for b ∼ � or b ≫ � the theories in24 may be more applicable. Lastly, the theory is independent 
of the current amplitude I as long as non-linear effects can be neglected.

Solutions to the characteristic equation
In general, the characteristic Eq. (13) must be solved numerically due to the integral containing F(ξ) . However, 
if the wire is located very far above the substrate such that |γ1h| ≫ 1 , the integral may be neglected due to the 
strong exponential damping. In fact, the characteristic equation is then dominated by a single term

This is the characteristic equation for a surface wave on a perfectly conducting cylinder surrounded by air 
which has been shown not to support any bound solutions31.

For all other cases we have solved Eq. (13) using Wolfram Mathematica. Due to the system being lossless, any 
bound mode will have a real neff  with √εr,1 < neff <

√
εr,2 . Note that a large value of neff  generally indicates a 

stronger confinement of the wave to the wire and substrate. We examine the effects of the substrate thickness 
and dielectric constant, signal frequency and the wire’s height above the substrate on the propagation constant 
by varying their values but keeping all other parameters constant. Nominal parameter values are a = 0.1 mm, 
b = 1.6 mm, εr,1 = 1 , εr,2 = 3 , h = 0.1 mm and frequency f = 10 GHz (cf. Fig 1). Our results are validated 
against finite element numerical solutions obtained with COMSOL Multiphysics32. Details on the simulation 
are given in the supplementary material. Figure 2 shows the results of the parameter sweeps. It can be seen from 
the figure that the effective refractive index and in turn the propagation constant crucially depends on all input 
parameters.

For instance, the height of the wire above the substrate influences how much electromagnetic energy can 
travel inside the dielectric substrate. In general, if the conductor is further away from the substrate, less energy 
travels in the dielectric. This means that the propagating mode has an effective refractive index closer to that of 
the surrounding medium. Consequently, as the conductor approaches the substrate, the effective refractive index 
increases as shown in Fig. 2a. Good agreement between our model and results obtained with COMSOL can be 
seen. However, at small heights COMSOL produces an effective index which is slightly higher than predicted 
by our method.

In fact, the results obtained with COMSOL in Fig. 2 seem to systematically lie above the results of our model. 
On the one hand, this deviation may be explained by our model neglecting the exact current distribution in 
the wire leading to errors such as those predicted in Eq. (14) which were on the order of 1-3% throughout the 
sweep. On the other hand, as the height becomes very small, COMSOL is forced to use elongated mesh elements 
between the wire and the substrate which is generally not recommended.

The effect of frequency on the PGL mode is shown in Fig. 2b. At high frequencies the wave localises close to 
the conductor similar to the classical Sommerfeld or Goubau line. This leads to an increase in neff  which ensures a 
fast transverse decay in the surrounding air. Additionally, one can think of increasing the frequency as localising 
more of the wave energy inside the substrate which slows down the wave. Thus, the PGL is generally dispersive. 
At very low frequencies, the wire cannot be approximated as a PEC anymore as the skin depth becomes similar 
to the wire radius. Hence, only values of the refractive index above 1 GHz are reported. Results obtained with 
our model and COMSOL are within a few percent and both show the same general trend although COMSOL 
predicts a slightly higher mode index.

Increasing the dielectric constant of the substrate slows the wave down. This effect looks to be nearly linear in 
the magnitude of the effective dielectric constant as seen in Fig. 2c. Agreement between the model and COMSOL 
is good at small permittivities but the results deviate increasingly with the dielectric constant of the substrate.

Finally, varying the substrate thickness influences the amount of energy that travels inside the substrate. 
Increasing the thickness slows the wave down leading to a higher effective refractive index. Fig. 2d also includes 
the effective refractive index of the TE0 substrate mode as Gacemi et al. reported that with increasing substrate 
thickness the PGL mode mixes and ultimately merges into this mode23. Indeed the COMSOL result aligns 
nicely with the TE0 mode and past a thickness of 7.5 mm only the substrate mode was detected in COMSOL. 
On the other hand, our model produces results beyond this thickness. However, a noticeable change in the 
behaviour neff  with the substrate thickness is observed after intersecting with the neff  of the substrate mode at 
around 6 mm. In fact, we were not able to obtain physical field patterns for values of the refractive index after 
this point. Hence, we believe that while results for larger substrate thicknesses can be calculated they do not 
hold any physical relevance.

Due to the dependence on geometrical parameters, the planar Goubau line can be designed to have a high 
or low effective refractive index signifying a strongly or weakly confined mode respectively. Clearly, a mode 
which is more localised near the substrate will experience increased dielectric loss. Hence, a trade-off between 
loss and field extent will need to be made. This can to some degree be mitigated by using low-loss substrates for 
instance quartz or plastics.

(22)K0(−iγ1a) = 0



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20754  | https://doi.org/10.1038/s41598-020-77703-w

www.nature.com/scientificreports/

Field pattern
Once the characteristic equation has been solved, Eq. (7) may be computed at every point in space to calculate 
the distribution of the z-component of the electric field. Plots of the resulting field are shown in Fig 3 using the 
parameters given in the previous section. The top two plots show the longitudinal electric field calculated in 
COMSOL (Fig. 3a) and with our model (Fig. 3b). Both plots are in excellent agreement with each other. It is 
interesting to observe that the field changes sign between opposite sides of the dielectric. This behaviour was 
also found in the simulations presented by Horestani et al. for the PGL but was not discussed16. We emphasise 
that the sign change is unique to the PGL and not found for the classic Goubau line where the mode is cylindri-
cally symmetric. This shows that despite some similarities between the PGL and the classic Goubau line such as 
an exponential decay at large distances, the presence of a single sided substrate substantially alters the Goubau 
mode. It breaks the cylindrical symmetry of the system which in turn means no pure TM mode can propagate. 
As a result only a hybrid mode exists on the PGL.

The logarithmic contour plot in Fig. 3c shows that Ez decays exponentially away from the wire at distances 
much greater than the wire radius. This can also be shown directly from our expression for Ez in Eq. (21). There, 
we can neglect the integral for |γ1y| ≫ 1 due to the exponential damping. As the incomplete Gamma function 
is small for large argument, the field is dominated by the modified Bessel functions which have an exponential 
decay for large, real argument. Thus, the field drops off exponentially with a decay constant |γ1| . This is consistent 
with previously reported field profiles13,16,17.

Experimental validation
To validate our results experimentally, we measured the effective refractive index of the PGL mode as a function 
of frequency. This is achieved with a simple setup. Using scaled versions of the planar launchers discussed by 
Akalin et al., we excite a Sommerfeld surface wave on a single copper wire1,10. S-Parameters are obtained with a 
Vector Network Analyser (VNA). Then, we introduce a dielectric slab of finite length l into the path such that the 
dielectric represents the substrate discussed in our model. In transmission, the substrate will cause a phase delay 

Figure 2.   Effective refractive index neff  of the propagating mode as a function of various parameters: (a) 
height, (b) frequency, (c) substrate permittivity and (d) substrate thickness. Results were obtained with the 
presented model and the finite element solver COMSOL Multiphysics. While sweeping one parameter, all other 
parameters were kept at their nominal values a = 0.1 mm, b = 1.6 mm, εr,2 = 3 , h = 0.1 mm and f = 10 GHz.
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�ϕ due to the increased refractive index of the now propagating PGL mode relative to the Sommerfeld mode. The 
delay can be measured with the VNA. Under the assumption that the Sommerfeld wave travels approximately 
at the speed of light, the phase delay is given by

This is now easily solved to give the effective refractive index of the PGL mode. Note that as we only measure 
the difference in phase that is introduced by the substrate, this measurement is independent of SW launching as 
long as a SW is propagating. Further details of the measurement such as wire radius and substrate size are found 
in the methods section at the end of the paper.

Figure 4a shows the measured refractive index of the PGL with the substrate touching the wire, i.e. h = a , 
as a function of frequency together with theoretically predicted values. To ensure that the wire touches the sub-
strate, it was taped onto it. Error bars were added to the theoretical values according to Eq. (14) estimating the 
higher order azimuthal current effects. Good agreement between theory and measurement is observed. Above 
20 GHz the effect of azimuthal currents increases drastically reducing the accuracy of the presented theory. Error 
estimates for the measurement were omitted in the figure for clarity as they were significantly smaller than the 
theoretical ones.

A further experiment is shown in Fig. 4b. It shows the effective refractive index of the PGL mode against the 
height of the wire above the substrate. The frequency of this measurement was fixed at 3 GHz. The error bars 
in the measurement represent the uncertainty in setting the height of the wire above the substrate which was 
estimated as ±1 mm. The accuracy was mainly limited by a slight bend in the substrate. Note that this error does 
not appear at h = a as the wire was taped to the substrate eliminating the uncertainty in height. Uncertainty in 
the theory as given by Eq. (14) was omitted as it becomes negligible at large heights h ≫ a . Given the accuracy 
of the measurement, the agreement between theory and experiment is considered good. However, measurement 
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Figure 3.   Plot of Ez obtained through (a) COMSOL and (b) calculated with the presented analytic model . 
Excellent agreement between the two field profiles is observed. (c) Contour plot showing log(|Ez |) calculated 
with the analytic model. The field is elongated along the substrate and exponentially decays away from the wire.
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values are systematically below their theoretical predictions. We interpret this as a systematic error in our meas-
urement of height due to the difficulties described previously.

Considerations for realistic planar Goubau lines
The presented simplified system has many similarities with the standard planar Goubau line such as the reported 
scaling behaviours with geometrical parameters and frequency. One difference is that in a real system, conduc-
tor and dielectric will be lossy leading to a complex effective refractive index. However, the main differences 
are that the conductor of a standard planar Goubau line has a rectangular cross section and the substrate is of 
finite width. In many cases the width of the substrate can be neglected as the electromagnetic fields of the bound 
Goubau mode decay exponentially. Thus, the edges do not have a strong influence on the field pattern. However, 
the shape of the conductor has been shown to strongly influence the effective refractive index12.

It is beyond the scope of this work to derive a complete theory to incorporate these effects. However, we will 
try to give some qualitative arguments to describe the observed trends within our framework. If we consider a 
conductor of finite thickness but variable width, then most of the electric fields and currents will be localised 
near the edges due to the lightning rod effect. Hence, a natural model is two parallel wires on the substrate which 
are located at the edges of the rectangular conductor carrying coupled surface waves. This type of coupling has 
recently been studied for Sommerfeld wires and it was shown to reduce the effective refractive index33. This 
behaviour is consistent with the observations in Ref.12.

Conclusion
This paper presents a theoretical investigation of a planar Goubau line consisting of a cylindrical wire above 
an infinitely wide substrate. To this end, the electromagnetic field of an infinitesimal current filament above a 
substrate has been derived in Fourier space showing that the resultant field will be a hybrid mode. By incorpo-
rating the finite width of a realistic wire, an approximate characteristic equation was derived. Estimates to the 
applicability of this equation were given before exploring the influence of geometrical parameters and frequency 
on the wave characteristics. It was found that, depending on the operating frequency and setup, both weakly 
and strongly confined surface waves can propagate allowing one to tune the geometry depending on the desired 
application. Furthermore, the field profile for a particular set of parameters was calculated. All results agreed 
well with numerical simulations and previously reported experimental studies. Finally, the derived model was 
experimentally tested and excellent agreement between theory and measurement was found. The limitations of 
the presented model with respect to a realistic planar Goubau line with rectangular conductor were discussed in 
the last section and some qualitative arguments were made to incorporate the effect of the conductor geometry.

To our knowledge this work is the first attempt at analytically modelling the planar Goubau line. Although 
only a version with circular conductor was discussed, the behaviour with frequency and other parameters was 
found to agree with the previous reports for a standard planar Goubau line with rectangular conductor. Hence, 
it may be considered as an important step towards a complete model of the PGL. In conclusion, we expect these 
insights to help better understand and utilise planar Goubau lines in printed circuit board designs for challenging 
applications such as terahertz spectroscopy or high frequency circuitry.

Methods
In our experimental setup a 15 cm long, 1.6 mm thick, dielectric slab made from FR4 epoxy in conjunction 
with a 0.5 mm annealed copper wire were used. The relative permittivity of the substrate is given as 4.55 by the 
manufacturer. For the measurement where wire and substrate are touching, the wire was taped onto the substrate 
to ensure contact. Contrary, in the measurement with different heights, we used ROHACELL as support for 
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Figure 4.   (a) Measured and calculated effective refractive index neff  of the PGL mode over a FR4 substrate 
as a function of frequency. Error bars correspond to the uncertainty in the theory due to first order azimuthal 
currents as given in Eq. (14). (b) neff  of the PGL over a FR4 substrate as a function of height at a frequency of 
3 GHz. Here, error bars are included in the measurement data and represent the error in measuring the height 
in experiment.
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the FR4 epoxy substrate. ROHACELL has a relative permittivity close to one. Therefore, we assume it does not 
influence the electromagnetic fields. S-parameters were measured by a 8722D VNA from Agilent Technologies.

Calculations based on the presented theoretical model were carried out in Wolfram Mathematica. The prin-
cipal value of the integral in (21) is taken explicitly with a value of ǫ = 10−5 after finding the roots of the 
denominator using a numerical root finding algorithm. Equation (13) is solved by calculating Ez for different 
neff  until it changes sign. Then, we interpolate the data to find the value of neff  which solves (13). For details on 
the COMSOL simulation, please refer to the supplementary material.

Data availability
Data and used code may be requested from the corresponding author.
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