5 research outputs found

    Discovery of a Selective and Potent Inhibitor of Mitogen-Activated Protein Kinase-Interacting Kinases 1 and 2 (MNK1/2) Utilizing Structure-Based Drug Design

    No full text
    The discovery of a highly potent and selective small molecule inhibitor <b>9</b> for in vitro target validation of MNK1/2 kinases is described. The aminopyrazine benzimidazole series was derived from an HTS hit and optimized by utilization of a docking model, conformation analysis, and binding pocket comparison against antitargets

    Discovery of a Selective and Potent Inhibitor of Mitogen-Activated Protein Kinase-Interacting Kinases 1 and 2 (MNK1/2) Utilizing Structure-Based Drug Design

    No full text
    The discovery of a highly potent and selective small molecule inhibitor <b>9</b> for in vitro target validation of MNK1/2 kinases is described. The aminopyrazine benzimidazole series was derived from an HTS hit and optimized by utilization of a docking model, conformation analysis, and binding pocket comparison against antitargets

    Discovery of RAF265: A Potent mut-B-RAF Inhibitor for the Treatment of Metastatic Melanoma

    No full text
    Abrogation of errant signaling along the MAPK pathway through the inhibition of B-RAF kinase is a validated approach for the treatment of pathway-dependent cancers. We report the development of imidazo-benzimidazoles as potent B-RAF inhibitors. Robust <i>in vivo</i> efficacy coupled with correlating pharmacokinetic/pharmacodynamic (PKPD) and PD-efficacy relationships led to the identification of RAF265, <b>1</b>, which has advanced into clinical trials

    Optimization of a Dibenzodiazepine Hit to a Potent and Selective Allosteric PAK1 Inhibitor

    No full text
    The discovery of inhibitors targeting novel allosteric kinase sites is very challenging. Such compounds, however, once identified could offer exquisite levels of selectivity across the kinome. Herein we report our structure-based optimization strategy of a dibenzodiazepine hit <b>1</b>, discovered in a fragment-based screen, yielding highly potent and selective inhibitors of PAK1 such as <b>2</b> and <b>3</b>. Compound <b>2</b> was cocrystallized with PAK1 to confirm binding to an allosteric site and to reveal novel key interactions. Compound <b>3</b> modulated PAK1 at the cellular level and due to its selectivity enabled valuable research to interrogate biological functions of the PAK1 kinase

    Design and Discovery of <i>N</i>‑(2-Methyl-5′-morpholino-6′-((tetrahydro‑2<i>H</i>‑pyran-4-yl)oxy)-[3,3′-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (RAF709): A Potent, Selective, and Efficacious RAF Inhibitor Targeting RAS Mutant Cancers

    No full text
    RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe <b>14</b> (RAF709) [Aversa, Biaryl amide compounds as kinase inhibitors and their preparation. WO 2014151616, 2014], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule <b>7</b> and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from <i>N</i>-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. <b>14</b> proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model
    corecore