12 research outputs found

    Diterpenes of Coffea seeds show antifungal and anti-insect activities and are transferred from the endosperm to the seedling after germination

    No full text
    International audienceSpecies of the genus Coffea accumulate diterpenes of the ent-kaurane family in the endosperm of their seeds, of which cafestol and kahweol are the most abundant. The diterpenes are mainly stored in esterified form with fatty acids, mostly palmitate. In contrast to the numerous studies on their effects on human health and therapeutic applications, nothing was previously known about their biological and ecological role in planta. The antifungal and anti-insect activities of cafestol and cafestol palmitate were thus investigated in this study. Cafestol significantly affected the mycelial growth of five of the six phytopathogenic fungi tested. It also greatly reduced the percentage of pupation of larvae and the pupae and adult masses of one of the two fruit flies tested. By contrast, cafestol palmitate had no significant effect against any of the fungi and insects studied. Using confocal imaging and oil body isolation and analysis, we showed that diterpenes are localized in endosperm oil bodies, suggesting that esterification with fatty acids enables the accumulation of large amounts of diterpenes in a non-toxic form. Diterpene measurements in all organs of seedlings recovered from whole seed germination or embryos isolated from the endosperm showed that diterpenes are transferred from the endosperm to the cotyledons during seedling growth and then distributed to all organs, including the hypocotyl and the root. Collectively, our findings show that coffee diterpenes are broad-spectrum defence compounds that protect not only the seed on the mother plant and in the soil, but also the seedling after germination

    Ecological role and biosynthesis of coffee seed diterpenes

    No full text
    International audienceSpecies of the genus Coffea accumulate diterpenes of the ent-kaurane family in the endosperm of their seeds, of which cafestol and kahweol are the most abundant (ca. 1-2% DW). In contrast to the numerous studies on their effects on human health and therapeutic applications, nothing was previously known about their biological and ecological role in planta. The antifungal and anti-insect activity of cafestol was thus investigated in this study. Cafestol significantly affected the mycelial growth of five of the six phytopathogenic fungi tested. It also greatly reduced the percentage of pupation of larvae and the pupae and adult masses of one of the two fruit flies tested. Using confocal imaging and oil body isolation and analysis, we showed that diterpenes are localized in endosperm oil bodies. Diterpene measurements in all organs of seedlings recovered from whole seed germination or embryos isolated from the endosperm showed that diterpenes are transferred from the endosperm to the cotyledons during seedling growth and then distributed to all organs, including the hypocotyl and the root. Collectively, our findings show that coffee diterpenes are broad-spectrum defence compounds that protect not only the seed on the mother plant and in the soil, but also the seedling after germination. Furthermore, the genes and enzymes involved in the biosynthesis of cafestol and kahweol remain unknown. Phylogenetic analyses were first performed to identify and classify all terpene synthases and cytochromes P450 (CYPs) in the coffee genome. Then, using a large transcriptome dataset (14 species and 5 seed developmental stages per species) and genes coding for the enzymes that catalyze the synthesis of ent-kaurenoic acid as guide genes, seven candidate CYP genes were identified through gene coexpression network analysis. Their role in cafestol and kahweol biosynthesis is currently investigated using heterologous expression in yeast and tobacco in combination with GC- and LC-MS analysis

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics
    corecore