26 research outputs found

    Structure of Carbon Materials Explored by Local Transmission Electron Microscopy and Global Powder Diffraction Probes

    Get PDF
    Transmission electron microscopy and neutron or X-ray diffraction are powerful techniques available today for characterization of the structure of various carbon materials at nano and atomic levels. They provide complementary information but each one has advantages and limitations. Powder X-ray or neutron diffraction measurements provide structural information representative for the whole volume of a material under probe but features of singular nano-objects cannot be identified. Transmission electron microscopy, in turn, is able to probe single nanoscale objects. In this review, it is demonstrated how transmission electron microscopy and powder X-ray and neutron diffraction methods complement each other by providing consistent structural models for different types of carbons such as carbon blacks, glass-like carbons, graphene, nanotubes, nanodiamonds, and nanoonions

    Estimation of the chemical specific surface area of catalytic nanoparticles by TEM images analysis

    Get PDF
    Purpose: The purpose of this article is the development of quantitative methods for assessing the quality of nanocomposite materials used in fuel cells. Design/methodology/approach: latinum is the most commonly used catalyst in fuel cells, commonly in the form of nanoparticles deposited on the surface of carbon black. Due to the nanometric size of platinum particles, transmission electron microscopy can be applied to evaluate the produced catalysts. TEM image also allow to determinate the approximate value of the chemical specific surface area) of platinum nanoparticles, but only in case of spherical particles. Findings: In present work, taking into account additional assumptions resulting directly from the analysis of microscopic images, the method of estimation of the particle diameter and the chemical specific surface area for nonsymmetrical (elongated) nanoparticles is present. Research limitations/implications: The presented work presents a method for determining the specific surface of platinum, when their shape is elongated. It is worth noting that the modified formulas for determining the particle diameter and the value of the chemically active specific surface of the platinum nanoparticles of the elongated shape are equivalent to the formulas previously given for spherical particles, if the particle length and its diameter are equal. In this case, patterns for symmetric particles and more general (modified) patterns can be used interchangeably. Practical implications: Development of new and more effective catalysts for fuel cells. Originality/value: The significance of the presented work results from the possibility of using the described method in the catalyst studies during real catalytic processes. It allows comparing catalytic activity after the process, also in unusual conditions and in an aggressive environment, using minimal amounts of material

    Evolution of glassy carbon under heat treatment : correlation structure-mechanical properties

    Get PDF
    In order to accommodate an increasing demand for glassy carbon products with tailored characteristics, one has to understand the origin of their structure-related properties. In this work, through the use of high-resolution transmission electron microscopy, Raman spectroscopy, and electron energy loss spectroscopy it has been demonstrated that the structure of glassy carbon at different stages of the carbonization process resembles the curvature observed in fragments of nanotubes, fullerenes, or nanoonions. The measured nanoindentation hardness and reduced Young’s modulus change as a function of the pyrolysis temperature from the range of 600–2500 °C and reach maximum values for carbon pyrolyzed at around 1000 °C. Essentially, the highest values of the mechanical parameters for glassy carbon manufactured at that temperature can be related to the greatest amount of non-planar sp2-hybridized carbon atoms involved in the formation of curved graphene-like layers. Such complex labyrinth- like structure with sp2-type bonding would be rigid and hard to break that explains the glassy carbon high strength and hardness

    Impact of MBE-grown (In,Ga)As/GaAs metamorphic buffers on excitonic and optical properties of single quantum dots with single-photon emission tuned to the telecom range

    Full text link
    Tuning GaAs-based quantum emitters to telecom wavelengths makes it possible to use the existing mature technology for applications in, e.g., long-haul ultra-secure communication in the fiber networks. A promising method re-developed recently is to use a metamorphic InGaAs buffer that redshifts the emission by reducing strain. However, the impact of such a buffer causes also a simultaneous modification of other quantum dot properties. Knowledge of these effects is crucial for actual implementations of QD-based non-classical light sources for quantum communication schemes. Here, we thoroughly study single GaAs-based quantum dots grown by molecular-beam epitaxy on specially designed, digital-alloy InGaAs metamorphic buffers. With a set of structures varying in the buffer indium content and providing quantum dot emission through the telecom spectral range up to 1.6 μ\mum, we analyze the impact of the buffer and its composition on QD structural and optical properties. We identify the mechanisms of quantum dot emission shift with varying buffer composition. We also look into the charge trapping processes and compare excitonic properties for different growth conditions with single-dot emission successfully shifted to both, the second and the third telecom windows.Comment: 20 pages, 9 figure

    The Structure-Properties-Cytotoxicity Interplay: A Crucial Pathway to Determining Graphene Oxide Biocompatibility

    Get PDF
    Interest in graphene oxide nature and potential applications (especially nanocarriers) has resulted in numerous studies, but the results do not lead to clear conclusions. In this paper, graphene oxide is obtained by multiple synthesis methods and generally characterized. The mechanism of GO interaction with the organism is hard to summarize due to its high chemical activity and variability during the synthesis process and in biological buffers’ environments. When assessing the biocompatibility of GO, it is necessary to take into account many factors derived from nanoparticles (structure, morphology, chemical composition) and the organism (species, defense mechanisms, adaptation). This research aims to determine and compare the in vivo toxicity potential of GO samples from various manufacturers. Each GO sample is analyzed in two concentrations and applied with food. The physiological reactions of an easy model Acheta domesticus (cell viability, apoptosis, oxidative defense, DNA damage) during ten-day lasting exposure were observed. This study emphasizes the variability of the GO nature and complements the biocompatibility aspect, especially in the context of various GO-based experimental models. Changes in the cell biomarkers are discussed in light of detailed physicochemical analysis

    A comprehensive study of pristine and calcined f-MWCNTs functionalized by nitrogen-containing functional groups

    Get PDF
    We present the study of pristine and calcined f-MWCNTs functionalized by nitrogen-containing functional groups. We focus on the structural and microstructural modification tuned by the previous annealing. However, our primary goal was to analyze the electronic structure and magnetic properties in relation to the structural properties using a multi-technique approach. The studies carried out by X-ray diffraction, XPS, and 57Fe Mössbauer spectrometry revealed the presence of -Fe nanoparticles, Fe3C, and -FeOOH as catalyst residues. XPS analysis based on the deconvolution of core level lines confirmed the presence of various nitrogen-based functional groups due to the purification and functionalization process of the nanotubes. The annealing procedure leads to a structural modification mainly associated with removing surface impurities as purification residues. Magnetic studies confirmed a significant contribution of Fe3C as evidenced by a Curie temperature estimated at TC = 452 15K. A slight change in magnetic properties upon annealing was revealed. The detailed studies performed on nanotubes are extremely important for the further synthesis of composite materials based on f-MWCNTs

    Oxygen functional groups on MWCNT surface as critical factor Boosting T-2 relaxation rate of water protons: towards improved CNT-based contrast agents

    Get PDF
    Purpose: Salicyl (Sal) – among other oxygen functionalities – multi-walled carbon nanotubes (MWCNTs) and their nanohybrids are investigated as promising contrast agents (CA) in magnetic resonance imaging (MRI) or drug delivery platforms, due to their unique properties. The preliminary results and the literature reports were the motivation to endow high r2 relaxivities, excellent dispersibility in water, and biocompatibility to superparamagnetic MWCNTs nanohybrids. It was hypothesized that these goals could be achieved by, not described in the literature yet, two-stage oxygen functionalization of MWCNTs. Results: Two structurally different MWCNT materials differing in diameters (44 and 12 nm) and the iron content (4.7% and 0.5%) are studied toward the functionalization effect on the T2 relaxometric properties. MWCNT oxidation is typically the first step of functionalization resulting in “first generation” oxygen functional groups (OFGs) on the surface. Until now, the impact of OFGs on the relaxivity of MWCNT was not truly recognized, but this study sheds light on this issue. By follow-up functionalization of oxidized MWCNT with 4-azidosalicylic acid through [2+1] cycloaddition of the corresponding nitrene, “second generation” of oxygen functional groups is grafted onto the nanohybrid, ie, Sal functionality. Conclusion: The introduced OFGs are responsible for an almost 30% increase in the relaxivity, which leads to remarkable r2 relaxivity of 951 mM−1s−1 (419 (mg/mL)−1s−1), the unprecedented value reported to date for this class of CAs. Also, the resulting nanohybrids express low cytotoxicity and superb diffusion after subcutaneous injection to a mouse

    Influence of Preheating Temperature on Structural and Mechanical Properties of a Laser-Welded MMC Cobalt Based Coating Reinforced by TiC and PCD Particles

    No full text
    This article presents research on the structural and mechanical properties of an innovative metal matrix composite (MMC) coating designed for use in conditions of intense metal-mineral abrasive wear. The layer, which is intended to protect the working surface of drilling tools used in the oil and natural gas extraction sector, was padded using the multi-run technique on a sheet made of AISI 4715 low-alloy structural steel by Laser Direct Metal Deposition (LDMD) using a high-power fiber laser (FL). An innovative cobalt alloy matrix powder with a ceramic reinforcement of crushed titanium carbide (TiC) and tungsten-coated synthetic polycrystalline diamond (PCD) was used as the surfacing material. The influence of the preheating temperature of the base material on the susceptibility to cracking and abrasive wear of the composite coating was assessed. The structural properties of the coating were characterized by using methods such as optical microscopy, scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The mechanical properties of the hardfaced coating were assessed on the basis of the results of a metal-mineral abrasive wear resistance test, hardness measurement, and the observation of the abrasion area with a scanning laser microscope. The results of laboratory tests showed a slight dissolution of the tungsten coating protecting the synthetic PCD particles and the transfer of its components into the metallic matrix of the composite. Moreover, it was proved that an increase in the preheating temperature of the base material prior to welding has a positive effect on reducing the susceptibility of the coating to cracking, reducing the porosity of the metal deposit and increasing the resistance to abrasive wear

    Structure and tribological properties of DLC:Si/AlCrN low friction thin film

    No full text
    A wide range of diamond-like carbon coatings is caused by their structure composed of sp2 and sp3 carbon hybridisation and the possibility of both metallic and non-metallic admixtures or the creation of a hydrogenated form. One of the ways to improve the tribological properties of DLC is to dope it with silicon. Deposited on stainless steel substrate coating system composed of AlCrN film covered by DLC:Si was the subject of the studies. The AlCrN and DLC:Si layers were deposited by PVD lateral rotating ARC-cathodes and PACVD on the X6CrNiMoTi17-12-2 steel respectively. Characteristics of DLC:Si film was performed by imaging the topography using SEM and AFM. The structure was investigated using a Raman spectroscopy and HRTEM. Tribological and adhesion tests were carried out using a ball-on-disc and a scratch test respectively. Tests using the TEM confirmed an amorphous character of DLC:Si layer. A phase composition analysis of the DLC:Si layer with the Raman spectroscopy method showed the presence of bonds distinctive for diamond (sp3) and graphite (sp2), typically observed in DLC coatings. Under the technically dry friction conditions, the friction coefficient for the associations tested is within the range 0.14 for the investigated coating

    Structure and tribological properties of DLC:Si/AlCrN low friction thin film

    No full text
    A wide range of diamond-like carbon coatings is caused by their structure composed of sp2 and sp3 carbon hybridisation and the possibility of both metallic and non-metallic admixtures or the creation of a hydrogenated form. One of the ways to improve the tribological properties of DLC is to dope it with silicon. Deposited on stainless steel substrate coating system composed of AlCrN film covered by DLC:Si was the subject of the studies. The AlCrN and DLC:Si layers were deposited by PVD lateral rotating ARC-cathodes and PACVD on the X6CrNiMoTi17-12-2 steel respectively. Characteristics of DLC:Si film was performed by imaging the topography using SEM and AFM. The structure was investigated using a Raman spectroscopy and HRTEM. Tribological and adhesion tests were carried out using a ball-on-disc and a scratch test respectively. Tests using the TEM confirmed an amorphous character of DLC:Si layer. A phase composition analysis of the DLC:Si layer with the Raman spectroscopy method showed the presence of bonds distinctive for diamond (sp3) and graphite (sp2), typically observed in DLC coatings. Under the technically dry friction conditions, the friction coefficient for the associations tested is within the range 0.14 for the investigated coating
    corecore