3,181 research outputs found

    Designing and Piloting a Tool for the Measurement of the Use of Pronunciation Learning Strategies

    Get PDF
    What appears to be indispensable to drive the field forward and ensure that research findings will be comparable across studies and provide a sound basis for feasible pedagogic proposals is to draw up a classification of PLS and design on that basis a valid and reliable data collection tool which could be employed to measure the use of these strategies in different groups of learners, correlate it with individual and contextual variables, and appraise the effects of training programs. In accordance with this rationale, the present paper represents an attempt to propose a tentative categorization of pronunciation learning strategies, adopting as a point of reference the existing taxonomies of strategic devices (i.e. O'Malley and Chamot 1990; Oxford 1990) and the instructional options teachers have at their disposal when dealing with elements of this language subsystem (e.g. Kelly 2000; Goodwin 2001). It also introduces a research instrument designed on the basis of the classification that shares a number of characteristics with Oxford's (1990) Strategy Inventory for Language Learning but, in contrast to it, includes both Likert-scale and open-ended items. The findings of a pilot study which involved 80 English Department students demonstrate that although the tool requires considerable refinement, it provides a useful point of departure for future research into PLS

    Effect of structural defects on anomalous ultrasound propagation in solids during second-order phase transitions

    Full text link
    The effect of structural defects on the critical ultrasound attenuation and ultrasound velocity dispersion in Ising-like three-dimensional systems is studied. A field-theoretical description of the dynamic effects of acoustic-wave propagation in solids during phase transitions is performed with allowance for both fluctuation and relaxation attenuation mechanisms. The temperature and frequency dependences of the scaling functions of the attenuation coefficient and the ultrasound velocity dispersion are calculated in a two-loop approximation for pure and structurally disordered systems, and their asymptotic behavior in hydrodynamic and critical regions is separated. As compared to a pure system, the presence of structural defects in it is shown to cause a stronger increase in the sound attenuation coefficient and the sound velocity dispersion even in the hydrodynamic region as the critical temperature is reached. As compared to pure analogs, structurally disordered systems should exhibit stronger temperature and frequency dependences of the acoustic characteristics in the critical region.Comment: 7 RevTeX pages, 4 figure
    corecore