34 research outputs found

    Altered Composition of Liver Proteasome Assemblies Contributes to Enhanced Proteasome Activity in the Exceptionally Long-Lived Naked Mole-Rat

    Get PDF
    The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life

    Rapamycin Allosterically Inhibits the Proteasome

    No full text

    Amyloid beta and the longest-lived rodent: the naked mole-rat as a model for natural protection from Alzheimer\u27s disease

    No full text
    Amyloid beta (Aβ) is implicated in Alzheimer\u27s disease (AD) as an integral component of both neural toxicity and plaque formation. Brains of the longest-lived rodents, naked mole-rats (NMRs) approximately 32 years of age, had levels of Aβ similar to those of the 3xTg-AD mouse model of AD. Interestingly, there was no evidence of extracellular plaques, nor was there an age-related increase in Aβ levels in the individuals examined (2-20+ years). The NMR Aβ peptide showed greater homology to the human sequence than to the mouse sequence, differing by only 1 amino acid from the former. This subtle difference led to interspecies differences in aggregation propensity but not neurotoxicity; NMR Aβ was less prone to aggregation than human Aβ. Nevertheless, both NMR and human Aβ were equally toxic to mouse hippocampal neurons, suggesting that Aβ neurotoxicity and aggregation properties were not coupled. Understanding how NMRs acquire and tolerate high levels of Aβ with no plaque formation could provide useful insights into AD, and may elucidate protective mechanisms that delay AD progression

    Chymotrypsin- and trypsin-like activities, but not the caspase-like activity were higher in the whole cell lysates from naked mole-rat than in mouse lysates.

    No full text
    <p>In each assay 50 µg of whole cell liver lysates from physiologically age-matched young mice (4 mo) and naked mole rats (2 yr) were used. The samples were incubated with 100 µM of substrate specific for the type of active center of the proteasome being measured. A saturating concentration of proteasome inhibitor N-(benzyl-oxycarbonyl) leucinyl-leucinal (MG132), determined by titration, was added to parallel samples. The difference of the fluorescence released with and without inhibitor was used as a measure of the specific peptidolytic activity of proteasome. Hatched lines indicate the amount of non-specific protease activity in excess of net specific proteasome activity. Values are means ± SE. Significant p-values are indicated in the figure.</p
    corecore