85 research outputs found

    Quantum mechanical which-way experiment with an internal degree of freedom

    Get PDF
    For a particle travelling through an interferometer, the trade-off between the available which-way information and the interference visibility provides a lucid manifestation of the quantum mechanical wave-particle duality. Here we analyze this relation for a particle possessing an internal degree of freedom such as spin. We quantify the trade-off with a general inequality that paints an unexpectedly intricate picture of wave-particle duality when internal states are involved. Strikingly, in some instances which-way information becomes erased by introducing classical uncertainty in the internal degree of freedom. Furthermore, even imperfect interference visibility measured for a suitable set of spin preparations can be sufficient to infer absence of which-way information. General results are illustrated with a proof-of-principle single photon experiment.Comment: 8 pages, 3 figure

    Optical Rotation and Thermometry of Laser Tweezed Silicon Nanorods

    Get PDF
    Optical rotation of laser tweezed nanoparticles offers a convenient means for optical to mechanical force transduction and sensing at the nanoscale. Plasmonic nanoparticles are the benchmark system for such studies, but their rapid rotation comes at the price of high photoinduced heating due to Ohmic losses. We show that Mie resonant silicon nanorods with characteristic dimensions of ∌220 7 120 nm2 can be optically trapped and rotated at frequencies up to 2 kHz in water using circularly polarized laser light. The temperature excess due to heating from the trapping laser was estimated by phonon Raman scattering and particle rotation analysis. We find that the silicon nanorods exhibit slightly improved thermal characteristics compared to Au nanorods with similar rotation performance and optical resonance anisotropy. Altogether, the results indicate that silicon nanoparticles have the potential to become the system of choice for a wide range of optomechanical applications at the nanoscale

    Two-dimensional domain structures in Lithium Niobate via domain inversion with ultrafast light

    Get PDF
    Periodic inversion of ferroelectric domains is realized in a lithium niobate crystal by focused femtosecond near-infrared laser beam. One and two-dimensional domain patterns are fabricated. Quasi-phase matched frequency doubling of 815nm light is demonstrated in a channel waveguide with an inscribed periodic domain pattern with conversion efficiency as high as 17.45%.Peer ReviewedPostprint (published version

    Engineering optical anisotropy in nonlinear crystals with ultrafast light

    Get PDF
    Photonic technology is widely based on anisotropic (and) nonlinear materials, which allow light modulation and parametric light conversion. Because the number of naturally occurring crystals is limited, there is a growing demand for artificial metamaterials with optical properties specifically tailored to a given application. Here, we utilize the top-down method to synthesize sub-wavelength periodic nanostructures inside a uniaxial optically nonlinear crystal (lithium niobate, LiNbO3) by irradiating it with multiple femtosecond laser pulses. By superimposing form-birefringence associated with the light-induced nanostructures onto natural birefringence of the host crystal we create macroscopic domains of a biaxial metamaterial embedded into otherwise uniaxial medium.The authors acknowledge the financial support from the Australian Research Council. W.K. acknowledges support from the Qatar National Research Fund (No. NPRP12S-0205-190047). P.K. thanks the Polish Ministry of Science and Higher Education for the “Mobility Plus” scholarshi

    Ferroelectric domain patterning with ultrafast light

    Get PDF
    © 2016 [Optical Society of America]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.Preprin

    The role of novel genes rrp1(+) and rrp2(+) in the repair of DNA damage in Schizosaccharomycespombe

    Get PDF
    We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Deltarrp1 and Deltarrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Deltarrp1 Deltarhp51 and Deltarrp2 Deltarhp51 plus the triple Deltarrp1 Deltarrp2 Deltarhp51 mutant did not display significant additional sensitivity. However, the double mutants Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Deltarhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Deltarrp1 Deltasfr1 and Deltarrp2 Deltasfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 mutants, but not Deltarrp1 Deltasfr1 or Deltarrp2 Deltasfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Deltarhp51

    Surface Plasmon Polariton Excitation in Metallic Layer Via Surface Relief Gratings in Photoactive Polymer Studied by the Finite-Difference Time-Domain Method

    Get PDF
    We performed numerical investigations of surface plasmon excitation and propagation in structures made of a photochromic polymer layer deposited over a metal surface using the finite-difference time-domain method. We investigated the process of light coupling into surface plasmon polariton excitation using surface relief gratings formed on the top of a polymer layer and compared it with the coupling via rectangular ridges grating made directly in the metal layer. We also performed preliminary studies on the influence of refractive index change of photochromic polymer on surface plasmon polariton propagation conditions

    Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine

    No full text
    Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine

    Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine

    No full text
    Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine

    Construction and operation of a light-driven gold nanorod rotary motor system

    No full text
    The possibility to generate and measure rotation and torque at the nanoscale is of fundamental interest to the study and application of biological and artificial nanomotors and may provide new routes towards single cell analysis, studies of non-equilibrium thermodynamics, and mechanical actuation of nanoscale systems. A facile way to drive rotation is to use focused circularly polarized laser light in optical tweezers. Using this approach, metallic nanoparticles can be operated as highly efficient scattering-driven rotary motors spinning at unprecedented rotation frequencies in water. In this protocol, we outline the construction and operation of circularly-polarized optical tweezers for nanoparticle rotation and describe the instrumentation needed for recording the Brownian dynamics and Rayleigh scattering of the trapped particle. The rotational motion and the scattering spectra provides independent information on the properties of the nanoparticle and its immediate environment. The experimental platform has proven useful as a nanoscopic gauge of viscosity and local temperature, for tracking morphological changes of nanorods and molecular coatings, and as a transducer and probe of photothermal and thermodynamic processes
    • 

    corecore